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Abstract

The effect of the motion of mass center of a two-level atom on its transition.in a quantized
radiation field is studied in this paper by generalizing the Jaynes—~Cummings model to include
the coupling depending on space degrees of freedom. As an additional geometrical phase—
Berry’s phase in the oscillation, the effect of the induced gauge field resulting from the Born—
Oppenheimer (BO) approximation explicitly exists in the transition probability between the
up and down states of atomic quasispin. It is shown that when the atom’s kinetic energy
is small enough that the BO adiabatic approximation holds for the case with small atom’s
momentum or large detuning, the adiabatically approximate solutions are applicable and it
is possible to localize an atom in the cavity.

Due to the remarkable advance in cavity electromagnetics, dynamics of atoms within single-
mode cavities (the micromaser),[!] it is reasonable to consider the effect of the mass center
motion of the atom on its internal transitions. It is shown in this paper that in a quantized
cavity with a very small size comparable with the wavelength of atom’s emissions. The space-
dependent interaction between the motion of mass center and the internal energy levels should
play an indelible role for the dynamics of the atom in a quantized radiation field (QRF). In
fact, a number of recent studies have involved this kind of space-dependent effect, e.g.,-in
Refs [2]-[5]).

To investigate this problem analytically, we invoke the space-dependent generalization of
the Jaynes—Cummings (JC) model¥ in this paper. Notice that the originally defined JC
model comprised a single two-level atom interacting with a single-mode quantized radiation
field (QRF) and its couplings with QRF are grouped into a space-independent constant by
considering the field which is homogeneous at the scale of the atom. However, it is necessary to
consider an inhomogeneous cavity field coupling with the internal degrees of freedom according
to the recent studies in both the experimental and theoretical aspects.[2=5]

Write the Hamiltonian for our model

P2 1
H= ot —2—hw0¢7, + h[k(z)a! + k*(z)a)o + hwa'a (1)

m
by resembling the alternative treatment for the JC model in Ref. [3]. Here, o, and o, are the
Pauli matrices for the quasispin and denote the internal degree of freedom of the atom; af
and a = (a!)! are the creation and annihilation operators for the single mode of QRF with
frequency w; P?/2m represents the kinetic energy of the mass center motion, and the coupling
" k(z) depends on the canonical coordinate z that satisfies [z, P] = ih. In the rotating-wave
approximation neglecting the rapidly-varying terms, the generalized JC Hamiltonian with
space-dependent coupling
P2 o1

) o p?
P 1., t —ig(z) 4t () gp) = 1o
H ot Qﬁwoazel; fwa'a + hg(z)(e alo_ +¢e'*%aoy) = am T Hn(z), (2)
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immediately follows the original one (1), where g(z)e~*%(*) = k(z), g(z) and ¢(z) are the real
functions of z. >

Notice that the case we deal with here is quite general and its specific case has been
considered for different needs in physical situations in terms of various methods(?35-7 such
as the adiabatic approximation. For instance, the x(z) takes the following forms for the specific
physical problems. 1) k(z) = Q(z) is real for the dynamics of trapping atoms by the vacuum
field in a cavity.I%) 2)

: fo<z<l
otherwhere

n@):u@):{;

for reflecting slow atoms by a cavity.!®”) 3) x(z) = ke'** for the quantum-nondemolition
measurement of atomic momentum by a quantized optical ring cavity.®) This case was proved .
to be exactly solvable.l®! It should be pointed out that these studies not only concern the effect
of the quasispin atom on the field as well as the usual effect of the field on the quasispin atom,
but also take into account the effect of space dependence on both the quasispin atom and the
radiation field. '
In this paper we present a solution to this general model by making use of the generalized
BO approximation®! developed by one of the authors (C.P. SUN). If the coupling x(z) depends
on the space slightly or the atom moves slowly enough, we can regard the coordinate = and
the quasispin dressed by QRF as the slowly- and rapidly-changing variables respectively in
the BO approximation. Firstly, we consider H, in an invariant scope of Hilbert space spanned
by '
- mD=mel1), m+L)=l+lell),

m=2m0, 1n=(y). 1m=(7)

Solving the eigenvalue problem of Hy(z) with the representation

where

_ 1 , Lo cos 8, sin 0,.e“¢)
Hn(z) = hw(n + 2)I + H}(z), H}(z)=hAw <sin 6.6%  — cos O, (3)
in the above invariant scope we obtain the eigenstates
On _; . 0
X4 (2)) = cos 2=, 1) + sin 2 |n + 1, 1),
' 2 2 @)

| Xn,-()) = sin 9—2"-e"¢|n, 1) — cos %‘—]n +1,1)

and the corresponding eigenvalues E,, + = hw(n + 1/2) £ iAw. Here, [ is a unit matrix, and

= Y- = /6% + ¢ 086y, = -
_-2(wo w);  Aw=4/62+g3(n+1), cosG,,_Aw

depend on z though g = g(z). So long as the adiabatic conditions hold so that the mass center
motion does not cause the transition between | X, +(z)) and |Xn _(z)), the generalized BO -
approximation can be used to determine the eigenfunctions of the whole Hamiltonian with
eigenvalues Ey as '

[¥n,2(z,0)) = ()| Xn,x(2)) (5)

approximately. Here, the space wavefunctions @, (z) of the mass center satisfy the effective
Schrédinger equations with steady states when the coupling g(z) is a constant '

_£[V - iAa(n)]z(I)i =(Ex - E, )0y, (6)
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where
_ V¢(z) cos?(6,/2 ifo=Tt,
Ao(n) = i{Xn o[V Xn o) = { - ) ()
Vé(z)sin*(8,/2) ifo=|

" are the induced gauge potentials that modify the solution of Eq. (6)
o f Az(z)dz eikz 8
i(z) m ( )
with the Berry’s phases

7+=/ A+(1:)d:c=/ cos? -oiV¢da:,
0 0 2

= / A_(z)dz = / sin® 0—"V¢dz.
0 0 2

It should be pointed out that the above solution (5) is valid only when the motion of the
atomic mass center does not cause the transition between | X, 4(z)) and |X, - (z)). This just
requires the adiabatic condition

| (X 4 (2)| P2/(2M)| X0 - (2)) |

E"’+ - E”,_ (9)
| 2 X4 (2)PXn, - (2))(24|P]-)/(2M) <1
Epy—En - h\/62 + gz(n + 1) ’
where ¢ is in rough A2f/2M where
d 2 d 2 d2 d
f— (E;on) ) ('d_z¢n) dz:z n | d1:2¢n | d:c d:l:¢n ’ |th;¢n ’

where hik denotes the momentum of the atom’s mass center due to Eq. (8) The above
conditions mean that the adiabatic approximation solutions (6) are only used effectively for
physical situation with small atom’s kinetic energy (~ |2|?) and large detuning (= 6) or large
photon numbers. -

Having the above BO approximate solutions, we are in the position to consider the dy-
namical feature of our model. If the system is initially in the polarized state at z = 0
bn . 8
[n,1) = cos "2‘|Xn,T) + sin ?"IX,,J) . (10)
The evolution state at time ¢ observed at z is obtained by Eqs (5), (8) and (9) as follows:
[¥(z,)) = an(t)in, 1) + ba(t)In + 1,1),

where
an(t) = (c032 ;‘21 o-i5in(0,/2)4() = awt

+ sin2 o_ﬂ.e—icos’(o,./2)¢(::)eiAwt) eikze—i[(hk’/Zm)+w(n+l/2)]t
2 (11)

bn(t) = sin %—cos 02 (ef <08 (0a/2)8(2) g =it

_ eisin’(ﬂn/2)¢(z)einwt)eikx —i[(hk’/Zm)+w(n+1/2)]t

Then we obtain the probability of finding the system with n +1 radxa,txon field quanta, and
the quasispin-down atomic sta.te | 1) is given by

Tln+ 1,1 (2, ) = a0, (12)
which becomes

a0 = 2D vt Lot BT P D) - e +70) (13)

Frgi(n+1)
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by using Eqs (10) and (11). ~.

Especially, when g(z) = g, the additional phase ¥ = v4 —= y- = cos6,¢(x) is a constant
and then the above probability is also written as

n+1 51 .
b (£)]? = 62—122—(*;)3 sin? = [w Fr et D) - i_;"_:f(“’rz +__1)] . (14)
Obviously, the additional phase y; ~y- = v appearing in Egs (13) and (14) denotes the effect
of space motion of the atom on its internal motion dressed by a quantized radiation field like
the phase effect in Bitter-Dubbers experiment, testing the Berry’s phase.l'!] This phase can
also be understood as the Aharonov-Bohm phase of the induced gauge field.[!%]

Notice that the appearance of the geometric phase v depends directly on whether the cavity
is prepared in nonresonant case or not. Otherwise, in the resonant case, § = 0, b ())? =
sin?(gtv/n + 1), the effect of ¥ vanishes!

We can also consider another effect of the motion of atomic mass center in the nonresonant
case, that is, the modification of population inversion pn(t) = [bn(t)|> — |an(t)|? or its relevant
absorption and radiation of the atomic energy in cavity field. Assume that the cavity field
is initially prepared in a coherent state |a) while the atom in an initial state with upward
quasispin and a definite momentum k. In this situation, we can write the wavefunction of the
atom plus the cavity

(2|0 (t)) = e-lel’/2 i l—a\/l—;_;[an(t)ln,]‘) +oa(®)in+1,1)].

Then we have the evolution of the average energy of the atom

o n 2 2
_ _lalﬂ lal 6 (n+ 1)
{o:) =e ,.Z=: {52+g2(n+1)+62+92(n+1)

cos| ot B 0 /P D

The effect of motion of atomic mass center manifests as the modified oscillation of energy with
an additional phase v = § - ¢(z)//62% + ¢%(n + 1). '

Finally, it should be emphasized that if the coupling g(z) in the space-dependent parameter
k(z) = g(z)e~** vanishes at the ends of the cavity, and the adiabatic conditions hold, the
atom can be trapped in the cavity for the same considerations as in Ref. [5] which do not
depend on the properties of the phase ¢(z).

(15)
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