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Abstract

This paper is devoted to building the representation theory of the general deformation for
su(2) and then using it to generalize the quasi-exactly-solvable quantal (QESQ) problems.
For the finite dimensional and infinite dimensional representations, two classes of generalized
QESQ models are respectively constructed in terms of the differential realization of the
general deformation of su(2). When the deformation is the g-deformation in the quantum
group theory, the QESQ model is discussed in detail by associating it with the nonlinear
precession of high spins in an external field.

1. Introduction

The so-called quasi-exactly-solvable quantal (QESQ) problem (or partial algebraization
problem of quantal spectra)[l'al occupies an intermediate and important position between
the exactly solvable ones and others. It has been probed for various areas in mathematical
physics, such as the supersymmetry quantum mechanics!*® the Heisenberg spin modell®:7],
one-dimensional analogue of rational conformal field theories!® and so on. In order to proceed
our discussion, we first describe the central idea of the QESQ problem briefly as follows. Let
the operator H on the Hilbert space H be the Hamiltonian of a quantal system. If H possesses
a diagonal block structure on a proper basis for H, i.e.,

H = diagblock (b, h'), (1)

where h is an n X n matrix with ‘small’ n and R’ is an m x m matrix with ‘large’ or infinite
m, then h can be diagonalized without affecting ' and a limited part of the spectra for the
guantal system is obtained in a purely algebraic way. The spectral problem H¥ = EV¥ with
such a Hamiltonian is called QESQ problem. In order to construct such a Hamiltonian, one
tries to express f{ as an element of the universal enveloping algebra (UEA) U(L) of a Lie
algebra L, ie., H = H(zy,Z2, -+, &) where z; (i = 1,2,---, M) are the basis vectors of L.
Then, one decomposes M into H = V&V and H takes the form (1) where V is a finite dimen-
sional representation space for L. Since the Hamiltonian H in the coordinate representation
is a function of coordinates (such as z) and the corresponding differential operator (such as
—~ihd/dz), the inhomogeneous differential realization of L must be needed in the QESQ prob-
lems. To this end, the general formula of differential realization of Lie algebras has been given
in Refs. [9] and [10].

One purpose of this paper is to make an extensive generalization of the QESQ problem and
the main idea is quite natural: As U(L) is an associative algebra over the complex number
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field C (C-algebra), one can use a more general C-algebra A to replace U(L) in the original
QESQ problem so that a wide class of generalized QESQ spectral problems is constructed.
The more general C-algebra used in this paper for generalized QESQ problems is a general
deformation D = D(f(z); su(2)) of su(2)[!12) which is generated by X* and h with
, [X*, X" =f(h),  [h X*F]=£X*, ©)

where f(h) is an operator function defined by a holomorphic function f(x). When f(h) = 2h,
D =U(su(2)) is just the UEA of Lie algebra su(2); when f(z) = [2z] = (¢** —¢7%%)/(¢g—¢?),
D =U,(su(2)) is just the quantum algebra (loosely called quantum group) of su(2)!314.

This paper is arranged as follows. In Sec. TI, we generally study the representation the-
ory of the deformation D from its regular representation. In Sec. IlI;.we construct various
inhomogeneous differential realizations of D associated with certain representations obtained
in Sec. IL. In Sec. IV, two classes of generalized QESQ models are constructed in terms of
the general C-algebra D and its realizations of representation. The corresponding spectrum
problem HW¥ = EW¥ which is equivalent to certain {nonlocal) differential equation or integral-
differential equation, is explicitly solved with sufficient examples. Finally, in Sec. V, the QESQ
problem of guantum group U,(su(2))=sly(2) is discussed in detail and related to the nonlinear
precession in an external field.

II. The Representation Theory of the Deformation D

In the following discussions, we sometimes take

f(z) = g(z +1) — g(2) (3)

for convenience. In fact, for many concrete cases, taking the special form (3) does not reduce
the generality. For example, if g(h) = (h — 1) (= [R][h — 1)), then D =U(su(2)) (=sl,(2)).

The basic representation of the deformation D as a C-algebra is its left regular represen-
tation (LRR) p, : D — End (D) defined by py(a)b = a-b, Va,b € D. Because of the general
function F(h), the LRR of D cannot be written in a concise form. We left need to consider a
left-invariant subspace W(A) = D(h — A) (A € C). On the quotient space Q(A) = D/W(A):

F(m,n)= X*" X ""mod W()), mneZ*={0,12,---,},

the representation induced by p, explicitly reads

X-F(m,n) = F(m,n+1)+ G(A = n,m)F(m — 1,n),

XtF(m,n)=F(m+ 1,n), hF(m,n) = (m — n+ A)F(m,n), )
where
G(z,m) = Zf(z—i-k),mzl, G(z,0)=0. (5) -
k=0
If f(z) = g(z + 1) — g(z), then
G(z,m) = g(z+ m) - g(z}. (6)

Now, we consider the deformed Verma representation p, of D, which is a generaliza-
tion of the Verma representation of su(2)!'®l or sl (2)[!l. Over a left-invariant subspace
L(A) = Q(A) - X, Q(X) has a quotient space V(A) = Q(A)/L(A) with the basis {F(m) =
F(m,0)mod L(A)|m € Z*}. On V(}), the representation (4) induces an infinite dimensional
representation p,,

X*t*F(m)=F(m+1), X F(m)=GA,mF(m-1), hF(m)=(m+I)F(m). (7)
It is the deformed Verma representation of D with the lowest weight, which is a general
deformation of the Verma representation of su(2).

Let us discuss how to obtain a finite dimensional representation for the deformed Verma
representation (7). If G(A,m) # 0 for any A € C and m € Z*, the representation (7)
is irreducible -and there is not a finite dimensional representation obtained from Eq. (7).
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However, if G(A,m = N) = 0 for certain A € C and N € Z*, then W(N)): {F(N),F(N+
1), F(N+2),---} is an invariant subspace and the corresponding quotient space Q(N, ) =
V()/W(N, ) |

{F(m) = F(m)mod W(N,\)|m =0,1,2,---,N — 1}

is finite dimensional. On Q(N, ), p,, induces a finite dimensional representation p,

plg)z=mop,(g)oxz), g€ D, z€Q(N,)N), (8)
where 7 : V(A) — Q(N, ), (rF(m) = F(m)mod W(N, ) is a natural map and #~1(z) is the
inverse image set of £ under 7). Let us consider several examples.

2.1) When g(h) = h3, on the basis

{¢(n) = {ﬁ(k2 + 3N+ 3A2)’1}F(n) In€ Z+},

we have an infinite dimensional representatlon Pus
Xté(n)=[(n+ 1)2+3AM(n+1)+3)%]¢(n+1), X ¢(n)=n¢(n-1), h¢(n) (n+A)é(n). (9)
If the parameter A satisfies

SAZ4+3(N+DA+(N+1)2=0 (10)
for an integer N (# 0), or

A=Az = %(—31 iV3)(N +1), (10a)

then there exists an invariant subspace W(N) : {¢(n) |0 < n < N} defined by such an extreme
vector ¢(N) that X+t¢(N) = 0. On W(N), equation (9) subduces an (N + 1)-dimensional
representation

X*g(n)=(n=N)[n+1-(1 q:i‘/Tg)]¢(n+ 1), for A=Ay,

X~ ¢(n) = ng(n-1), hé(n) = (n + Az)é(n) .
2.2) When g(h) = sin (hx/N) (N € Z*), we have an infinite dimensional representation
- . (A+n LA

X~ F(n)= [sm( N 7r) -—sm(ﬁ‘lr)]F(n— 1},
XtF(n)=F(n+1), hF(n)=(n+ A)F(n).

For a nonzero integer N € Z* and o € Z*, XF(2aN) = 0. Then, we have an invari-
ant subspace chain V() = WO(N) D WY(N) D W%N) D --- D W*(N) D ---, where
W(N){F(2aN), F(2aN + 1), F(2aN +2),-- -} is an invariant subspace. On each quotient

space Q*(N,A) = V(A)/W?(N), we will obtain a finite dimensional representation and its
explicit form can be written out in the way similar to Eq. (12).

2.3) In fact, in the quantum group case that f(h) = [2h], we have the representation
X*g(m)=[p-nlo(n+1), X~¢(n)=[nlé(n—1), ho(n)=(n—2)e(n)  (13)
of the quantum algebra sly(2)[17). Here

n-1
om ={I1 TR,

III. The Inhomogeneous Differential Realization of D

The inhomogeneous differential realization (IDR) of Lie algebras plays a key role in con-
struction of the QESQ models. To make a generalization of QESQ models in terms of ‘the
general deformation of su(2), we also need the IDR of the C-algebra D. In this section we will
build the general scheme to obtain IDR of D based on previous works(®19,

(11)

(12)
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Let B be the Bargmann space of the holomorphic function f(z) on C and its basis be chosen
as {z"|n € Z*}. The coordinate z and the corresponding differential .d/dz are fundamental
operators on B. A natural homorphism from the deformed Verma space V()) to B is ®:
®(F(n)) = z". Then the following commutative diagram

V() —— B

Pv(9) l lT(g)/ Vge D,

. 3
V(\) —— B
defines an operator representation of T on B : {§ = T(g)|lg € D}. We call T the IDR of D
associated with p , which can be written in an algebraic form ® 0 p (g) = T(g) - ®, or
T(g) = ®op,(9)®". (14)

In fact, p, is a C-algebra representation of D, so we can check that

T(0y9, + @39,) = o, T(g;) + a,T(g,),  T(919,) = T(9,)T(g,), ay,a, €C, (15)
namely, T(g) defines a C-algebra representation by a direct calculation. It follows from
Egs. (14) and (15) that
T(X™)z" = G(A\,n)z""! = [g(A + n) — g(N))2""?, (16)
T(X+)e" = 2041 T(h)2" = (A + n)z",
that is to say '

Xt =2, X':—i—[g(/\+z%)—g(/\)], iz=,\+zdii, G =T(), g=X*h). (17)

Corresponding to the examples in the last section, three IDR’s are given respectively as follows.
3.1) When g(h) = A3 the representation (9) leads to

X+ —z[z =3 +(2+3A)z~+(3A2+3A+1)]

18
x-=2 LI o
T d2’ =P
3.2) When g(h) = sin (7rh/N ) the representation (12) leads to
- d _ A
X-= {sm[()\+z—)N ] —sm(N)},
; (19)
Xt =z . h=X+2—.
dz
3.3) The IDR of the quantum algebra sl,(2) is given by the representation (13) as follows:
N 5 17 d . d
+ = -_—2— T=—-lz—| = = _
X -z[p z ] X z[zdz] D,, h /\+de, (20)
where D, is the q-(deformed) differential operator so that!1?
fla) = f(g~2) _ f
D,f(z) = ————"""—- K(, 2 d¢,
() =TT D) - - § ke o

K(€ 2) = [(€ - q2)(€ — g~ 2))".

IV. Generalized QESQ Problems

In the original QESG problem, ihe Hamiltonian H is built in terms of the generators {z;}
of a Lie group corresponding to a Lie algebra L, that is to say, H is an element of the UEA
U(L) of L. So the inherent dynamic symmetry is just characterized by U(L) or L. Up to now
the QESQ problem has been generalized so that it possesses the inherent dynamic symmetry
of Lie superalgebra. In this paper we will make a further generalization by replacing U(L) with
a general C-algebra—the general deformation D of su(2). The QESQ model built in terms
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of D naturally possesses a new symmetry defined by D. We will discuss this generalization
for two cases, one is for the finite dimensional representations and the other is for the infinite
dimensional representations.

4.1 The Case of Finite Dimension

In this case the generalization is quite direct and the Hamiltonian is a combination of the
generators for D, i.e., H=HX*X" ,h). Through the differential realization, the spectral
problem HY¥ = E¥ is eqmvalent to the elgenvalue problem of the ordinary differential equation
such as

H(z,27 (g(A+ zdii) —9(M) A+ zE;)\P(z) = BY(z). (22)

Provided that the basis for calculating the matrix elements of H is chosen as {vy,va,--,vn,
other basis orthogonal to v, i = 1,2,---, N}, where v; (i =1,2,.--, N) is the basis for an N-
dimensional representation of D, the Hamiltonian H is automatically written as the following
block diagonal form

H1,1 Hl,z ce HI,N
) Hyy Hap -+ Hyn 0 Hy 0
H: e e .o PR P = 0 H (23)
Hyy Hn2 -+ HNN ’
0 Ho

where H; ; = (v;|H|v;) and Hy is usually an infinite dimensional matrix. Then, we can obtain
a part of spectra for Eq. (22) by diagonalizing an N by N matrix Hy without touching H,.
Let us use two examples to give a sketch of the above arguments.

Example 1. Let g(h) = sin (7h) and

A= f: Conk(XTY™(X7)"(h)*,  Cmnk €C. (24)

m,n, k=0

The spectral problem H¥ = EV in the differential realization is
Z Crinkz™™ "{sm[N ( o + /\)] - sin(%vzr-)}(zdii- + /\) ¥(z) = E¥(z2). (25)

. mn k=0

On the space of the two-dimensional representation, the elements of Hy are

Hoo =) Coor)*, Hio=) CixXt, Ho = 2sin(m)) (1+ A)*Cou,
k=0 k=0 k=0 (26)
Hy = Hoo +Z2sm(7r/\)(l + NECii +§:{E T k)|,\'=-"} Hoo + HI,.

Diagonalizing Ho, we obtain the eigenvalues and the corresponding elgenfunctlons

1 _ H
Eyg = Hoo + 5(1{{, +/HZ - 4H01H10) . Wy =F(0)+ —iI——"QF(l) (27)

Example 2. Let g(h) = h3, A = (-3 £iv/3)/2, (N = 2) and

H=aX*+a'X~" +Bh, ap€eC. (28)
The differential realization of H¥ = EV is
42 '
[az-"a-; +(3az’ + B2+ 3)z + a')gd; +az+3)A+32% 4+ ﬂA] ¥(z) = E¥(z). (29)
Considering the submatrix of H on the invariant subspace {¢(0), #(1), #(2)},
. BA a* 0 .
Ho=| a(1+3x+3)%) B(1+ X) 20 ) (30)

0 a(4+6) +312%) B2+ 1)
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we obtain a part of eigenvalues and the corresponding eigenfunctions

Bras=Xipa—3,  Wi(2) = 6(0) +aid(1) + bi(2),

o; = Ei = Hoo _ (Hon = Bi)(Hyy = Bi) = o Hyo (31)
et 202
where d 42 f3\1/271/ d NN
1/271/3 1/271/3
xl-[“§+ 7+27) ] +[ 3 ( +27) ] ’
3\1/271/3 3\1/291/3
x2=w[-—g+( 57)/ ) : +“’[';’ ( +£7)/ [

o=l (G B) el - (5 B

wherew—z( l+\/—z) d_——a + b, f——a ——ab+c and

a=a—-22 -3, b=p2[A2-(2a-3)A+2-3a]—a?(9X2 +151+9),
c = 2lal?aB(4 +6X +322) ~aB2(L+ A)(2+ A) —a?B(1 +3X + 3X%)(2 + X).

4.2 The Case of Infinite Dimension

" The QESQ problem for infinite dimensional representation of Lie algebra has been discussed
in Ref. (7] and the method used is quite similar to that in Ref. [6]. This subsection will be
proceeded based on Refs. [6] and [7].

Define the elements g; (i = 1,2, - -, K) of the K-multiple product of D:

K times
.

D®¥ -DeD®D®---D®D,

by

9i=1®1®---.1 ®:q®.1 ® -+ ® 1 g €D.

1, 2, <o -1, 1, i+1, cee K
Accordingly, the representation space V(/\) of D®K i is also a K-multiple product
V(Aly ’\2a ST K) - V(’\) V(Al) ® V(Az) Q- V(’\K)
with basis {F(nl,nz,-n,_n,() = F(ﬁ) = F(m1)® F(n2) ® ---Q F(ng), F(ni) € V(N), i =
- K},
Assoclated with D®K the generahzed QESQ Hamiltonian is constructed as

A= H{(x+)m-<x ™} + Z:BaH{h"-
Tiami=y L m ni=0  i=1 (32)

C Apa = Am:.'",mx;m’,,"'.m'x eC, B,g = Byp,,..nx €C.
Because

K .
{H(X'f")m-‘(X’.")m’.'}F(nl,nz., e ,n,() [ 4 F’(n1 +my —m'l,n2+m2—m'2’. .. :nK’*'mx—mIK),

the summation 2 ;=1 M is invariant under the action of H for Z, M = Z'_l m}. Thus,
there exists an H-invariant subspace W (X, N) : {F(A)ln +n2 +- -+ nyx = N} for a fixed
N € Z*. Then, we can partially diagonalize H on the subspace W(A N) and obtain a part
" of the spectra of H.

For example, in the case of g(h) = h, K =2and H = X F X5 +hyhy, the invariant subspace
is chosen as W(Aq, A2,2) : {F(n1,n2)| ny +n2 =2}. On W(/\l, A2,2), the submatrix Hy of H
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is

’ /\1(2 + Az) 0 0
Ho=| 2(14+3X +3X%) (1+A)(1+2X,) 0 : (33)
0 4460 +33F A2+ ))

Then, we partially get the spectra of H¥ = EV: .

d? d
3 2 2 2 e
z] ———323622 + (321 + 321 + zlzz)dzldzz + (3A121 + 3121 + /\122)‘122 (34)
d ,
+ '\221d— + (A2 = E)]‘I'(Zl,i’z) =0.
21
The eigenvalues and the corresponding eigenfunctions are respectively
Ey =22+ M), Ey = (14 A)(1+A2), E3=M(2+As),
_ T e 446X + 3)2
¥, = F(2,0), ¥, =F(1,1) + pY v F(2,0), (35)
2(14+3X) + 322) (44621 + 32H)(1+ 301 + 3A3)
V3 = F(0,2) + F(1,1)+ F(2,0).
s =F(0.2) M—A-1 (1) (A2 = A1+ 1)(A2 = A1) 20)

V. Generalized QESQ Models in Terms of Quantum Group

In this section, we will construct a QESQ model with the quantum group (algebra) sl,(2)
dynamic symmetry. The spectral problem is equivalent to the eigenvalue problem of a class
of nonlocal differential equations (integral-differential equations). It is also shown that this

QESQ model describes the spin precession with highly nonlinear interaction in an external
field.

Considering Eq. (20) and
[F - 2%]2" = [p—n)", [u - 2%] f(2)=(a"f(a'2) - ¢ #f(gz)) (g — ¢ )", (36)

we write down the realization of sl;(2) in an integral form

X*H1()= 5 f A WMy, X1 =52 B ), iD= (2 - #) 12), @7

where C is a closed curve around the points gz and ¢~z in C, and

A, 2)=—-q"2)"y—92)™",  B(y2)=z((ply-+1]2)A(y,2)  (38)
are the integral kernels.
Now, we consider the spectral problem of the Hamiltonian
H=H(g)=aXt*+a"X"+Bh, a,B€eC. (39)
The corresponding function H¥ = EV is equivalent to the nonlocal differential equation
(az?q* — a™)¥(q712) - (azq™* ~ a")¥(q2) + B2%(¢ - ¢7Y),

diz\r(z) = z(E + ﬂ%)(q ~ ¢ ¥(2),

or an integral-differential equation
1 d I
_ — = =
o }(C K(y, 2)¥(y)dy + B9 (2) = (E+ pL) ¥(2) (41)

with the integral kernel K(y,2) = aA(y,z) + a*B(y,z). In fact, we easily observe that
H— Hy = B-L as q — 1, where L, L, and L3 are usual angular momentum operators
satisfying [L;, L;] = il k=123 and By =a+a”, By = i(a — a*), Bs = B. Therefore,
the Hamiltonian H(q = 1) just describes the linear precession of a spin in a magnetic field
B. According to Ref. [18]. the quantum group operators X% can be regarded as the quantum
deformations D(Ly) of Ly = Ly £iLs in a given irreducible presentation of su(2),

Leljm)y={UFm)yxm+ DY/ jm+1), L3|j,m) = m|j,m). (42)

(40)
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The explicit forms of these deformations are
i F La)[j & La + 1] \¥/2
X* = D(Ly) = Ly (U F LU ,
(t2) = L (G oG a s 1)
We expand {[j F La][j £ L3 + 1]}*/2 about ¢ = 1 and obtain

X* = Ly + 0 UG +1) - Wls + LaLa(La D) + -,
H=H+AH=H+ %(m OHGG+1) = 1)(aLly + oL ) (44)

+(aLy +a*L)LE3} +---
Because AH = H — Hy contains higher order interaction of spin coupling, L+ L3, LyL} and
s0 on, the g-deformed Hamiltonian H describes highly the nonlinear interaction. The QESQ

scheme built in this paper provides us with a method to partially obtain the excited spectra
for such a quantal spectral problem.

On the basis for the irreducible representation of sl4(2)

[J+k+l] U2\ i4m B _ .. .
,m(z)-{l'[( R EAIF EL-FE ES FES RRE IS FINCY)
and ¥;_;(z) = 1, where #is taken as an integer, the Hamiltonian H has a block diagonal
structure H = blockdlag(Hl/z,Hslz,- -, H#/2 ..)), where H = ((J,m|H|], m')| m,m’ =

h=D(L3)=Ls. (43)

=1, +,—j) is a (2j + 1) x (2j + 1) matrix. Without affecting Hj'(j’ #7), we diagonalize
H? to get the spectra of Eq. (40) or Eq. (41) in part. For example, when j = 1,
B [2]e o
‘H!' = [2)a* 0 2la |. (46)
0 [2]le* -8

Then, we obtain the spectra E = E,, = m[2(g + ¢~ V)|a|? + #%]/2, m = 0,£1, and the
corresponding eigenfunctions

~1\1/ ~1y1/2
W(z) = %\I’n(z) + ng":l—_'_)ﬂa‘\lln(z) +Wio(2). (47)
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