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Abstract

A new complete set of spin coherent states is constructed and applied to study the time
evolution matrix of one-dimensional antiferromagnet by means of the path integral method.
A topological term expressed as the superposition of the Berry’s phase of individual site is
obtained. The superposition is not the Berry’s phase of the system but the A-A phase of
the spin chains, and the equation obtained by our path integral method is consistent with

that given by others.

I. Introduction

A path integral method in terms of the generalized coherent state was early introduced
by J.R. Klauder to study the transition matrix elements!’~2l. Through it, the conventional,
classical Hamiltonian dynamical formalism arises from an analysis of quantum dynamics re-
stricted to a complete set of vectors. In the following we give a brief introduction to the path
integral in terms of the generalized coherent states for the need of this paper.

Let |I) denote vectors in Hilbert space X, where ! = (i!,---,I*) is a real point in a L-
dimensional label space, and these vectors are assumed to be continuously differentiable in
the variables. In addition, they are normalized

[ =1. (1
A resolution of unity is assumed to be in the form
/ s =1, (2)

where 61 is a suitable measure. The vectors which satisfy Eqs. (1) and (2) are called the
generalized coherent statesl?],

We want to derive a path integral representation for the propagator

e ¢y = <z| exp[_—i(i:—m{] |z) , (3)
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where H is the Hamiltonian for the physical system.

According to the usual path integral method and the Trotter formula, the propagator can
be written as

(U ) = / exp{ %[ih(l(t)ﬁ(t)) ~ H(i(®)}de} Dt 4)

where

li(t)) = —|l(t) Dl= Haz(t) = lim Hazk

N—vm k=1

With the help of the general form of the path integral, equation (1) leads to

= [ inualien - B . O

Equation (5) has the form of classical action functional, where H(I) = ({|H|l) is the classical
Hamiltonian. Thus, if a set of coherent states is chosen, one can always obtain the classical
action functional in terms of the integral of the coherent states.

In this paper we first construct a new set of coherent states for one-dimensional antifer-
romagnetic spin chain, then we apply the path integral of the coherent states to study the
topological term and the equation of motion of the chain. We obtain a topological term ex-
pressed as the superposition of the Berry’s phases of individual site. The superposition is not
the Berry’s phase of the system, but the A-A phase of the spin chains. The consistency of the
equation of motion obtained by our path integral method with that got by F.D.M. Haldane
derives the reasonability of the classical representation of the spin by Haldane.

II. Spin Coherent State

In the following discussion, we take h = 1.
For a single particle of spin S (see Refs. [3]-[4]), we consider the state

28

o) = NH2exp (o, 8201 1) = N2 3 [t ©)

where | 1) denoted the highest weight vector, §,| 1) = §| 1), and |P) is the eigenstate of §,
such that
S'llP):(S—P)IP)) P=0)1a2)""251 (7)

v; runs over the complex plane and N is a normalization factor. We have

(valor) = N71(1+ Jor ?)° (8)

and hence the normalized state is

lo1) = (14 Jo1|?) "5 exp (02 8-)| 1) . (9)

It is easy to get the resolution of unity

25 +1
__W_/d%l(lﬂ o) (o] = Z |P)(P|=1. (10)
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No. 1
So |v;) constructs a normalized complete set of states and they are coherent states or spin

coherent states.
By the simple calculation, we can have the following relations:
4 25|v; |2 A 25v, 4 2Sv}
S:lvi)=8 - —— S. = — S_ =—-=. (11
(v1]Szfvr) = S 1+ [va]? (v1]S4|v1) 1+ [ (v1]S-|v1) 1+ [vy? (11)
Let us write
v1=¢‘¢tg5, 0<8<m, 0< ¢ <2r, (12)
then the normalized states can be written as
g\ 28 6 .. .
lv1) = (cos 5) exp(tgic'd’S_)l 1) (13)
and the completeness relation is
25 +1
EX /d¢dﬁsin0|vl)(vll =1. (14)
™
(15)

From Eq. (11) we have
(v1|§_|ul) = S'sin 06_'¢ s

(vllgzlvl) = Scosd, (UIIS'+ Ivl) = Ssinfe® )
form which we get the result for the expectation value of the spin vector
(v1|S|v1) = S, i = (sinf cos ¢, sinf sin ¢, cosf) . (16)

It is shown that |v;) is the eigenstate of §-n,
(17)

(S - A)|vr) = Slvi),

b

and if we let § = 3, we can obtain

8

cos E

wi=| 2 |=lew, (19)

sin —e'?®

2
. .1 1
where in the spin-3 case, | 1) = 0 |’
Similar to the same consideration as proceeding, we consider the state
(19)

vz) = (14 [va[?) ™% exp (w2 84)| 1),

where | |) is the lowest weight vector, §,| |) = —S| |). It may be demonstrated that |vs) is a
normalized, complete state and so it is a coherent state. We have the following relations:
28v;

A 25,02,2 a
(v2]S; |v2) ik (v2[S4 |v2) T+ [0l 0

2 2302
S_ = —.
(‘Ugl Ivz) 1+ |02I2
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We choose alternative parameters

g .
vy = —-tgic_"b , (21)
then |up) can be written as
828 0 _ipa
= - —tg—e* . 22
|va) (cos 2) exp( tge S+)| 1) (22)
From Eq. (20) we have
(va2]8elvs) = —Scosf,  (v3|84|vz) = —Ssinfe’s, 29

(v2|.§_|vg) = —Ssinfe"*?,

from which we get .
(v2|S|v2) = —S7. (24)

It can be shown that |vz) is also the eigenstate of S - i, but the eigenvalue is —S,
(S - A)|v2) = —S|va) (25)

and if we let S. = %, we can obtain

|vz) = = 02), (26)

cos —

2

0
where for spin-1, | |) = ( )
1

III. One-Dimensional Spin S Antiferromagnet

The Hamiltonian for the one-dimensional antiferromagnetic Heisenberg model, which only
deals with the interaction of the neighboring sites, is

H= ZS Soii. (27)
Let the State
N)= H|'~’2)n ® |v1)n+1
n
= O+ [5n) "5 ex (08)1 1)@ (14 [P exp (a5 1) o)
n
= g(cos %'5) = exp (—tggc_i¢.§+)| e (cos 0";1)23 exp( tg-o—-';ﬂc‘¢n+l .§_)| 1)

describe the Heisenberg model (27), where ® means the direct product. With the help of the
discussion about the single particle coherent state, we easily get

=1, [ T] o = [ [T (35

sinfndfndgn) . (29)
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Thus, |N) constructs a normalized, complete set of states or coherent states for one-dimension-
al antiferromagnet. From the introduction the propagator is

(N|e=" "=V H | Ny = / exp{ / [(N|igt-|1v) — (N|H|N)|dt} D(6n,4n) . (30)
and the classical action functional is

s:/[(mi%w) - (N|H|N)]dt. (31)

The first term in S is very interesting. After a complica.ted calculation, we get

.d
(Nli—|N) = Z ;g in¥n — Uny 1 " Iv |2 (32)
Considering the two kinds of coherent states for single particle of spin S and noting
0,; s on 'y
Up = —tg-—2—€ ¢ ) Unyy =tg 2+]e $nt1 )
we have respectively
S omvt = Unbh] = Sn(1 - cosby) (33)
T o UnYy T UnV, | = n{l— n),
14|y, 20 0 "
1S ; . e ; ‘
m[0n+1vn+l - vn+1vn+1] = —S¢n+1(1 — €08 0"+1) y (34)
from which we obtain
.d el
(NEIN) = Y =(=1)"]1S¢n(1 —cosdy) . (35)
n

Let ®(ri(0, ¢),i(#', '), fio) be the area of the spherical triangle with vertices 7(8, ¢), 7(¢’, ¢')
and fig, then we have

(1 = cosd)(1 — cos?’)
1+ cosf cos ' + cos(¢' — ¢) sin § sin 6’

cos®=1- sin®(¢' - ¢) (36)

where
7i(0, ) = (sin d cos $,sin f sin ¢, cos 0) ,

ii(6’,¢') = (sin ¢’ cos ¢’,sin 6’ sin ¢’, cos ¢’} , 7 = (0,0,1)
are three points on unit sphere. If 7(8’, ¢') approaches 7i(f, ¢) infinitely or 6’ = 6 + df,
¢ = ¢ + dg, we can get
® = (1—cosf)dé = (1 — cos §)dd . (37)

From Eq. (35) we can write
/ (Nl }N)dt Z / (vali dtlv,.)dt E e, , (38)

where 8, = /@,, = /(vn Ii%fvn)dt is the area of the cap £ bounded by the wire I' given by

the trajectory #i, = (sin 6, cos ¢,,,sin d, sin @,,, cos§,,) and it can be written asl®!

e, = /1 dr /T dt 7i(t, 7) - (8¢7i(t, 7) X 8,(¢, 7)), (39)
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where 7i(t,7) i3 an arbitrary extension of the n(t) variable into the rectangle defined by the
limits of integration and satisfies the boundary conditions #i(t, 0) = i(t), 7i(t, 1) = i ,#(0,7) =
A(T, 7). If we take two neighboring sites, then we get a local expression

T
Qn + ¢n+1 ~ a/ dt fig * (atﬁ" X 6,7’1‘,.) s (40)
0

where a is a lattice distance.

Assuming a smooth variation of the fi, the sum of the individual ©,, gives
. d a—0 1 - = — —
/(N\tE\N)dt=zn:9n = E/dt/dzn'(aznxatrf.). (41)

Obviously, it is a topological term. Thus we obtain a topological term in the action functional
for one-dimensional antiferromagnet in terms of the coherent state |N).

The individual term in Eq. (38), [(v,|i3|v,)dt, is the Berry phasel®! of the system whose
Hamiltonian is § - 1. So the topological term of one-dimensional antiferromagnet is the su-
perposition of the Berry’s phase of individual spin in § - fi.

On the other hand, we may ask whether the superposition of the Berry’s phase is a Berry’s
phase of the whole chain. We say it is not, but we can show that it is the A-A phase for the
whole chain, we will give the evidence in the following.

Let us assume

IN) = 70| M) (42)
where f(t) is a function of t, and |M) is a state in the Hilbert space or it satisfies the
Schrédinger equation of motion

d

ta—t|M) = H|M) . (43)
Here, H is the Hamiltonian for the one-dimensional antiferromagnet. From Egs. (42) and
(43), we have

I~ NE) - VRS, (49
—f= /[(Nh‘dith)—(NlHlN)]dt:S. (45)
Hence equation (42) becomes
IN) = e*5|M) . (46)
Let Eq. (31) be acted by H, we get
Wy =id vy - miwy . (47)

If we are able to demonstrate Eq. (47) by means of our coherent state |N) (Eq. (28)), it
manifests that our assumptions on Eqs. (42) and (43) are right. But it is difficult to show
Eq. (47) directly. On the other hand, from Eq. (47) we can reduce

ds

.d
o = (NEZIN) = (NIHIN), | (48)

S= / [(Nli%W)\— (N|H|N)|de (49)
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Obviously, equation (49) is right and this manifests that equation (47) is right indirectly!”).
So |N) is the state in the projective Hilbert space PI%l and J(N[iZ|N)dt is the A-A phase of
the antiferromagnet.

' IV. The Equation of Motion
From Eqs. (11) and (20), we can get

(NlHlN)z(N|Z§n§n+1|N)

1
= (N| Z{Snzsn+l,z + E(Sn+Su+1 + Sn—sn+1+)}|N) (50)
) 52 12 2
=2 A L ) fonsaP) + 26707+ 2onvna ]

Regarding v, and v,; as the independent “classical” dynamical variables, a general variation
of v, and v}, in the action functional

S = f ”'l‘;’ (N|H|N)}dt (51)

1 + |v
yields the equations of motion

_ (PP ONIHINY L _ (14 [oal?)? SNIHIN)

52
251 v} Yoom 281 dv, (52)
From Eq. (50) we have
0, = s [”n(l ~lont1?) + ¥4y — Vitnss + vn(l “vlvn—1|2) + Y51~ Yavn-1
v L fonta 1 [ona? (s
o = f_ [”;(1 — |va+1]?) + vpt1 — v;2”;+1 + V(1= [vn=1]%) + va-1 — v;2v;_ 1]
" —3 1+ |vn+1|2 1+ lvn_llz ’
Substituting the alternative parameter of v, into Eq. (53) we get
b = S[—(=1)"] D _ sinbpz1 sin ($nt1 ~ én) ,
c (54)

q@,. = S[—(—'l)n] Z[COS 0n41 —ctgly,8inb, 1 cos (qS,,:H - ¢n)] .
+
As classical equations of motion, equations (54) should be related to the Hamilton equations

in classical dynamics (the principle of correspondence).

Learning from the quantum mechanics, Heisenberg equations should be changed into
Hamilton equations under the transformation for the quantum operators becoming the corre-
sponding expectation values. From Eq. (27), we can get the Heisenberg equation

*
-

S = [§ A] = (S'n+1 +§'n—l) X §” . (55)

s|;—n

Haldane has used the spin angular variables to describe the expectation of spin in antiferro-
magnetlg]
S, = (—=1)"S(sin 0, cos ¢y, 8in by, sin Py, cosb,) . (56)

f
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Substituting Eq. (56) into Eq. (55) we have

én = _(_l)ns Z[cos Ont1 Sin(¢nil - ¢’n)] )
. : | (57)
én = —(-1)"S Z[sin nt1 — ctglp sinbpyq cos (i1 — én)] -
+
We see that equations (57) are the same as Eqs. (54). It manifests that Haldane’s description

about the expectation values of spin in antiferromagnet is all right and reasonable.

V. Discussion

Up to now, we choose the eigenstates of S - i whose eigenvalues are +S respectively to

construct the coherent state |N) for one-dimensional antiferromagnet. In the same way, we

may choose other eigenstates of § - i to construct |N), we know that the eigenstates of S -7
with £m eigenvalues are eX*m#e=i5:4¢=i5s0|S +m) = |L; ;) (m # 0), where §,|S, £m) =
+m|S,+m). Let them substitute for |v;) and |vz) and construct |N) by direct product of
individual site in the same way, then we can obtain the same result.
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