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Abstract
In this paper the high-order adiabatic approximation (H,OAA} method is formulated in a
new form 8o that the calculation is greatly simplified. Usi-%g this improved HOAA method,
we study the Berry phase effects of the Alkali atom in a slowly-changing strong magnetic
field and also the non-adiabatic transitions between the instantaneous angular momentum

states. The possible observability is also pointed out.

I. Introduction

Time evolution of quantum system governed by a changing Hamiltonian can be geomet-
rically analyzed and its adiabatic case leads to the famous Berry’s topological phase and the
corresponding induced gauge structurel!?l. For the non-adiabatic case, a few methods calcu-
lating non-adiabatic transitions, such as the schemes for successively diagonalizing (SSD)[3“5I,
the high-order adiabatic approximation (HOAA) method(6=9], the generalized WKB approx-
imation (GWKBA)[*®1!l and the extended Born-Oppenheimer (EBO) approximation!!3]
(for the case that the changing parameters are dynamic variables), were proposed with respect
to the Berry’s phase and the induced gauge field respectively. However all the discussions!3—13
only concern with the case of precession of spin % as an example, which is an ideal model rather
than a practical physics system. Thus, it is worth paying attention to a practical physics sys-
tem — a Alkali atom with a higher orbit angular momentum state in a slowly-changing strong
magnetic field: )

B(t) = B(t)(sin 8(t) cos $(t), sin 6(t) sin $(t), cos 6(¢)) .

The Hamiltonian for the problem is

A(t) = B1B(0) = %i—ﬁ2+V(r)+a§-(Lz+2§), (1)

where o = ¢/(2uc), u is the reduced mass and the L — S coupling has been neglected for the
sufficiently strong magnetic field E(t]
II. General Formulation of Improved HOAA Method

We consider the simple degenerate case that the Hamiltonian depending on the slowly-
changing parameters R(T) = (Ry(t), R2(t),- - -, Ry (t)) has a set of degenerate instantaneous
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eigenstates |na|R]) (e = 1,2, -+, D,) with the eigenvalues E,[R| = E,(t) transforming as an
irreducible representation I''*l under a varying symmetry group, which is an isomorphism of
a fixed group G. Let & =1 and

n a=1

Dn - t N .
#6) =3 Y Coalt)exp[~i [ Enlt)at’]nal) (2)
0 » .
be a solution of the time-dependent Schrédinger’s equation

.d A
iZ19(0) = HIp(e)
Then

D, ¢
Cralt) + D (nal RIMGIRNGna(®) = = 3 exe[~ [ (EnlR] - BlR )]
B=1 my¥n

o.. _ (3)
X ) (na[R||mp[R])Crms(t),
B=1
where we have défined d
=1, f=210
and
] d

né{f1) = iralf])

for a function f = f(r) of 7.

In Refs. [6]—[8], the right-hand side of Eq. (3) is expanded as a series of the adiabatic
parameter (1/T) through the integration by part (T is a characteristic time of the system such
as the period of B(t)). Because the infinite terms are contained in the series, the calculation is
very complicated. Now, in order to avoid this complexity, we simply regard the right-hand side
of Eq. (4) as a perturbation from a physical consideration'that the right-hand side completely
vanishes when H does not depend on time, it is very small when )i slightly depends on time.
Using the perturbation theory of linear differential equation, we obtain

Cralt) = f: clH, | (4a)
k=0

. ’ Dn .

Cl(e) + > (nalRlInAIR)CE)() = 0, (4b)
ﬂ=0

= t
M)+ D (nal RInA(RICH = — 3 exp[-i /0 (BalR] — B[R]
. 'l’;in (4¢)
x 3 (na(RImARNCE (), k=12,
B=1

So long as we can obtain the first order solution cldl (t), we can easily obtain the higher-
order solution from Eq. (4c) since the equations of C¥] (t) only concern with clk-1 (t)(k > 1).
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According to Refs. [7] and [9], for the case with an invariant symmetry group,
(na|R]|nB[R]) = b48(nc|R]|[n&[R]) = —bapivnalt),
then, we have .
CIEM(t) = Cna 0) explitaa (1], B
where .
Yua(t) = / (na(R'|na[R'])de" (6)
“Jo
. i8 just the Berry’s phase.
When the adiabatic condition
{na[R]|mp(R])
B ERl <1 0

holds, the parameter R(t) changes so slowly that all the higher-order terms Cl¥) (&) (k> 1)
in Eq. (4a) can be neglected and the first-order approximation solution C,[.Otl describes the
evolution of the system sufficiently in the adiabatic case.

II1. Berry’s Phasé for the Alkali Atom

According to the angular momentum theory, we rewrite the Hamiltonian as

2
H(t) = Ry (t)Rs(t) [Z—p;ﬂ +V(r) + aB(t)(L, + 25,)|RL ()R] (¢), (8)
where
RL(t) = e—i19(t)La ~i0(t) Ly o)
and ‘
Rs(t) = e~ 8(t) 8 ,—i0(t) Sy ‘ (10)

are the reduced rotation operators respectively on the coordinate space and the spin space.

Then, we immediately obtain the instantaneous eigenstates

lo(t)) = .In,l, m, m,(t)) = RL(t)Rs(t)Rni(r)|l,m) ® |9, m,) (11)
. with the corresponding eigenvalues ’ .

E, (1) = Enimm,(t) = By + aB(t)(m + 2m,), (12)
where 0. = (n,l,m, m,)‘, |l, m) and. |S,m,) are the standard angular momentum states and

Rpi(r) is the Coulomb radial function.

The direct calculation leads to
d .
<U,(t) I EZ"(t)> = 8 bnnt {Bm,m [—id(t)m cos 08mm: + Fi(t) f4 (L, m)bmr,m+1
+F- (t) f— (1) m)sm’,m—ll + 5m,m'['—'l:¢z(t)m, cos 05”,",":. (13)

+F+(t)f+(%)ma)6m',,m.+l + F_ (t)f— (%: ms)sm’,,m.—l]}:

where
Fa(t) = 5lisin0d(0) 3 ()],

(14)
fx(3,m) = [(F F m)(G £ m + 1)/2.
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Then, we obtain the explicit expression of Berry’s phase

Ymm, (t) = Tnimm, (t) = 1/ (U(t’)l a(t’))dt' —(m, + m).[ﬂ(t) + ¢(t)], (15)
where .
a(t) = /0 (1— cos8(¢'))B(t')dt', (18)

which is just the solid angle
2r
2(0) = [ (1~ costlgl)a (17)
0

subtended by the loop C : {B(t)|B(0) = B(T)} with respect to the point B = 0 on the
parameter manifold M : {B} for a cycle evolution that B(0) = B(T). For the atom with
the spin-up electron state and the orbit angular momentum state that the observable L,
has a definite value /i at ¢ = 0, the polarization of the atom with spin-up electron state is
characterized by the probability Py that atom is in the orbit angular momentum state |I, m)
at t = T. Using Eqs. (2), (4a) and (5), we obtain

Py = [1-sin?0 -sin® o /0 B(t)dt')| 7 diurms (90)dinrms (G0) - dinm (60)
i (18)

i (8) cos (' —m”)( /0 B(¢)dt' +0(c])]

in terms of the d-function of the angular momentum theory. The solid angle Q[C] appearing
in the above equation manifests an observable effect of the Berry’s phase.

IV. Non-Adiabatic Transitions

When B(t) ch.anges so fast that the adiabatic condition

[|sin 64(2)| + 161%)*/2
|aB(¢)]

<1 (19)

does not hold, the non-adiabatic effects appear as the transitions between |o(t = 0)) and
lo(t = T)). Let

B = X Coe ™ I B0 o ) (20)
be a solution of i< |¢(t)) = H(t)|%(t)). Then
énlmm. (t) _iﬁmm.(t)cnlmmn(t) =
’"{F—{- (t)e—iﬂ(t)[f-i- (l) m)Cnlm+1 m,(t) + C_iﬂ(t)f+(%: ma)c’nlmm.'f'l(t)] (21)
+F_ (t)em(t)[f— (L, m)Crim—1m,(t) + e‘ﬁ(t)f—(%’ m)Crtmm,.-1(t)]},

where

B(t) = a/OtB(t’)dt'.

¥f the initial state of the atom at ¢t = 0 is |n, I, m, m, (¢t = 0)), the initial conditions for Eq.
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(21) are
im0 =1, CLL, (00 =0, ((mm,)# (m,m.)), -
Chitm, (00 =0, (k=1,2,-),
then we have the first~order approximation solution
OBl () = €772 O b, @)

and the second—order approximation equations

O et () = i3 1 (O 1, () = —Fi ()™ 2O f (1,m ~ 1)C L (1), (24a)
CM i1, (&) = 1, (OO ot () = —F_ (PO f_(,m+ )P (1), (24D)
M 1) = m =1 (O o 1 (8) = = Fy ()220 £ (2,m, —1)CN] L (8), (24¢)

ol () = #m 1 (O () = = Fo (0¥ O £ (4, + 1)CE),, L (6) - (209)
Their solutions define the transition probabilities
Pz —o)=|Cll2, &= (nlmm,).
The selection rule for the transitions under the second-order approximation is
Am = =1, Am, = +1.

A similar discussion gives the selection rules

Am=£1,42,---,+{k-1), (ks1),

Am= 1,42, ---,kl, (k>1),

- Am, = %1

under the &’ th-order adiabatic approximation. These transitions manifests the non-adiabatic
effects accompanied with Berry’s phases.

Now, we calculate the explicit transition probabilities. Because the exact transition prob-
ability can be worked out by using some tricks in a particular case that f(t)=constant and
<;l;(t)=constant, we now consider a more complicated case

kt 27
0 = —_—— = — = .
‘ (t) = 8o T #(¢) Tt B(t) = constant B
From Eqs. (24a) and (24b), we obtain the transition probabilities
P(lt, m(0)) — |t,m £ 1T))) =[O} s m, (TP

nl*m:i:im.
- | £+ (4, m) l2

s /0 “fcos T (¢) - Ax(¢') — sin I‘i(t')Bi(t’)]dt"z

(28)

+l ‘/:[cos T4 (t') - Bi(t') +sin I‘i(tl)Ai(tl)dt’r} )
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where X Kt
T o
I‘i(t) = :tr sm(00 - T) + aBT,

kt

Ay (t) = k1 cos (00 — E,—

) + %[2m cos (00 - %) + aBT] , (26)
B (t) = Fsin (00 - %) [2m cos (00 - %) + aBT] .

V. Discussion

It is easy to observe that the external magnetic field E(t) can not cause the transition
" between two states with different quantum numbers (n,1) and the effects related to Berry’s
phase only appear with respect to the magnetic quantum number (m,m,). Thus, the dis-
cussion about adiabatic and non-adiabatic evolutions only concern with a given irreducible
representation of SO(3).
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