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Abstract
The induced topological action relevant to the non-Abelian Berry’s phase factor (NABPF)
is derived by combining the high-order adiabatic approximation (HOAA) method with Ku-
ratsuji and Iida’s adiabatic path integral formulation. The non-adiabatic corrections for the
transition amplitude are thereby obtained and the corresponding graphic representations are
defined for convenience in the calculation. The gauge invariant properties and the dynam-
ical implications of the non-Abelian induced topological action are also analyzed in detail.

Finally, some explicit calculations for a model of physics are carried out as examples.

I. Introduction

In order to throw a deep light on the dynamic implication of the Abelian Berry’s phase
factor (ABPF)!! and the origin of anomaly in gauge theory, Neimi, Semenoff?/, Kuratsuji and
Iidal3! applied a path integral formulation to a quantum system with two sets of variables, a fast
one (“internal” coordinates) and a slow one (“collective” coordinates). They observed that,
when the fast part of the Hamiltonian of the system has non-degenerate instantaneous spectra,
the adiabatic effective action governing the slow variables includes the ABPF as an additional
topological term. This topological term would be regarded as a “Wess-Zumino” term in some
generalized sensesl4l. It is easy to see that the effective Hamiltonian corresponding to this
effective action is just what obtained by the generalized Born-Oppenheimer approximation!®.
Then, a generalization of this path integral formulation naturally rises for the cases that
the fast part of the Hamiltonian has degenerate eigenstates in this paper. For the case with
degeneracy, Wilczek and Zee have made a generalization of ABPF, which is called non-Abelian
Berry’s phase factor (NABPF)'G]. They also recognized that the NABPF can induce a non-
Abelian gauge structure just as the ABPF can induce an Abelian one-U(1) induced gauge
structure. While the discussions concerning the NABPF and the induced gauge structure

were carried out, the relevant observable effects have been pointed out by different authors!7l,

In this paper we will discuss how the NABP.F appears in the effective action as an addi-
tional topological term, what properties the induced topological action possesses and what the
higher-order corrections are when the adiabatic conditions do not hold. All the discussions
are based on a generalization of an adiabatic path integral formulation given by Kuratsuji and
Tida and a combination of the high order adiabatic approximation method (HOAA-method)
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suggested by one (C.P. SUN) of the authors!® with Wu’s adiabatic Dyson expansion (ADE)
for HOA A9, The graphic representation of the higher-order non-adiabatic corrections is also
defined for convenience. With a model relating to the nuclear quadrupole resonance (NQR) -
as an example, some explicit calculations are finally done in this paper.

II. Quasi-Adiabatic Path Integration for Degenerate Case and
Graphic Representation

Let H = Hy[R, P]+A|R, r| be the Hamiltonian of a quantum system where R and r repre-
sent the slow variable and fast variable respectively. The Hamiltonian E[R, r| of the fast part
depends only on the slow coordinates R and not on their conjugate momentum P. We also as-
sume that there is not accident degeneracy of fz[R, r}, i.e. the degenerate instantaneous eigen-
states |n, ¢[R]) (o = 1, 2, - -+, dn) with the eigenvalues E,[R] transform as an irreducible
representation I'l?] of a continuously-varying symmetry group G[R]. At each instant, ;z[R, r|
has different symmetry group G|R(t)], but G[R(t)] is always an isomorphism of a fixed group
Gl¢l. Now, we consider a matrix element K(t, to)na.mg = (n, o[R(t)]|K(t,t0)|mB[R(t0)]) of
the evolution operator K(t, to) = exp[—iH - (t — to)], where we have taken h = 1 and defined
the following expressions |n, a, R(t)) = |na(t)) ® |[R(t)) and |na(t) ) = |na[R(t)]) in terms
of the eigenstate |R(t)) of the coordinate operator R such that R|R(t}) = R(t)|R(t)). Fol-
lowing a procedure similar to that in Ref. [3], we obtain for the matrix element a path integral

express ion

K(t, tO)na,mﬁ = /{dR] . U(R; t, tO)na,mﬂ . exp[iSo[R;'t, to”, (l)
where Sp = So[R; ¢, to] = f:o(P "R- ﬁolR, P])dt’ is the action associated with H, and

t
OB 1, tohnams = (nel ROIIPerp [~ [ HREN)mblRG). (@)
to
It should be noticed that the evolution matrix U = U(t,ty) = U(R;t,to) of the fast part
appearing in Eq. (1) satisfies the Schrédinger equation
.0 - .
‘ zaU(t, to) = A[R(¢)|U(t, to) ; Ulto, to) = 1. (3)
By combining the original HOAA method with Wu’s ADE formulation for HOAA, we obtain
a series of solutions of Eq..(3) (for the details of derivation see Appendix)

U(t, to) = ZU[ I(t, to),

U t0) = 3 S5 Wi t, to)as )ap exp i / En[R()|d¢ | I, o R nBIR (o),

n a,pf=1

U‘ ](t tO = Z Z 2 Z /W(n,t T)aﬂA(n, m, T)ﬂ.,

n m#n a,f=1 v,6=1 (4)

xginm(D) " LG ER RN il R (mS R k)],

Ut(e, to) = (- 1)2 i [, Bate)at' T Y Y%

ni-1#n ni_a#Eni—1 ni1#n; no#Eny
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t Ti—1 T2 T1
x/ d‘r,_lf dri_g - / dn/ dro{W(n; t, n—1)A(n, ni—1, 1-1)
to to to to

1

X exp [iwnn,_, (n-1)] J] W (&, 7y m-1) Ak, -1, 16-1)
k=l-1

X exp ittnams-. (1) W (noroto) } I, alR(A)]) o, BLR(to)],

where wpm(t) = ft: (En[R(t'))— En[R(t')))dt', A(m, n, t) is a d, Xd,, matrix with its elements

<na[R] I gat- ' nﬁ[R]) = A(n)agp, m=un;

Al 2 8ot =\ (nalR)|(d/de) HR(1)) I R]) )
AT R
and the path-order integration
R(2) t
W(n, t, to) = Pexp [— /;wo) A(n)] = Pexp [—- /;’A(n, t')dt'] (6)
is just the NABPF with a matrix-value induced gauge potential one-form A(n) = A(n, R);
A(n)aﬂ = (na[R]]dlnﬂ[R]), a,f=1,2,dp, (7)

where d is the exterior differential .opera.tor on the manifold u : { R}. Substituting Eq. (4) into
Eq. (1),.we obtain

K(t; tO) = ZKM (ta tO) ’
=0 ’

€
KO, t0)nams = / [dRW (n; t, to)as exp[iSo ", / E,,[R(t')]dt'] b » (8a)
to
t
Km(t, to)na,mp=/[dR]{/ drW(n;t,7) A(n, m, T)ei””M(’)W(m;r, to)} 5
to ' . ’ (8b)
x expliSo—i f En[R(¢)]d¢] (1 = ),
to
t
KY(t, to)naymp = / [dR]exp[iSo -1 / E”[R(t')]dt'] O, to)nayms » (8¢)
to

where

Ul (m, n, t, t(;)ap = exp [i [tEn[R(t')]dt'](n,a[R(t)”U['] (¢, to)|mB[R(t0)])

=) ¥ )DERITED DD /t:dn-1/t:_ldﬂ'—z”'

ni—1#n ni_a#FEn na#¥ns ni#ng

T2 Ty ‘
X/ dTl/ dTO{W(n, t; Tl_l)A(n, ni—1, 77—1)6""""!—1('!—1) (9)
to to

1

X H [W(nk) Tk Tk—l)A(nln Ng—1, Tk—l)e‘u“k“k'l(rk—l)]
k=i-1

xW(m, 70, to)} ng=m.

b
a,f
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For convenience in practical calculation, the graphic representation of the high-order correction
term is defined as shown in Fig. 1.

Ti-1 Ti-2

Fig. 1. A graphic representation of high-order correction Ul'l(m, n, ¢, to).

In the above diagram, the loop with indices (tk—1, nk—1, tk—2) represents the NABPF
W (nk—1, tk—1, tx—2) while the straight line with end point indices (ng, tx—1, nk—1) represents
the “propagator”
A(nk, ni—1, Th—1) = A(nk, k-1, Te—1) eXP [Wn,n,_, (Te-1)] (10)
from state [ng_ja(rx—1)) to state | ngf(7)). The limited sum of ny_; # ny is implied by the
assignment that the indices ny_; and ng do not lie the same horizontal line. In comparison
with the oscillation of the factor exp[—ifg(En — E,)|R(t"))dt'], if (na(t)] & Imp(t)) (m # n)
changes slowly enough, then the adiabatic conditions
(nalRllglmBIR) Rl _ \ a

|Ea[R] — Em[R]|
hold, and so that we can neglect all the terms KU'l(¢, to) (I > 1), obtaining the first tran-
sition amplitude KOl (t, to) corresponding to a diagram of graphic representation with one

loop. When the conditions do not hold, we need to calculate the higher-order approximation

corrections according to the graphic representations with many loops.

II1. Induced Topological Action and Its Gauge Invariance ’

When the adiabatic conditions (11) hold, we have U(T)pqa,np = Uloy(T, 0),,,,',;,9 with
ylol (T,0)nang = exp[—ifOTE,,[R(t')]dt']W(n, T)a,p, where we have taken t = T, to = 0 and
defined f(t, 0) = f(t) for any function f(t, t'). If the system is subjected to a cycle evolution,
i.e., R(t) is a function with period T, W(n, T) is a loop phase factor!l® W(n,T) = W,,[C] =
Pexp|[— § A(n,R)], and C : {R(t)|R(0) = R(T)}. In this case, the transition amplitude
from|R(0)) to |R(T)) isl®]

20)= % fiom v e spfis ~i [ Eninienel]
: T (12)
=1Tr {Z/IdR]Pexp{i/o [ﬁg(R, R) — E,[R(t)] + 'iA,;[R]R,,]dt}} ,

where Lo(R, R)= PR~ Ho(P,R), 8§ = [y Lo(R, R)dt and A,[R(t)|ap=(na|R]|55-|nA[R]).
In the presence of an external source J(t) that can be regarded as an external force acting on
the coordinate, the “generating function”

Z(T); =3 / [dR] Tr {Pexp [i /0 T(zo(iz, R) — E[R(t)] +iA.R, + J(t)R)]} . (13)
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sufficiently describes the whole dynamics of the slow variables in the adiabatic situations. We

observe from Eq. (12) that, associated with the induced effective action
T
Serr(T) = 5o(T) - / Ea[R(¢)]d¢' + (W, [C]), (14)
0 A
the matrix-value effective Lagrangian is
Legt = Lo(R, R) — E,[R] +iAu[R|R,, (15)
which corresponds to the effective Hamiltonian
Heg = Ho(—iV,+ Ay, R)+ E,[R). (16)
Especially, when Ho(P, R) is taken to be a concrete form Hy = 537 V2 + V(R), we have
1 .
A = ~537 (Ve - iA,)% +V(R) + E,|R]. (17)
Therefore, the non-Abelian “Wess-Zumino” term In W, [C] resulting from the NABPF provides
the motion of the slow variables R with a background vector field A, and a scalar field E,(R).
This fact shows the possible dynamic effects of the NABPF. However, the eigenequation of

;zgR, r) allows a local unitary freedom in determining an eigenstate |na[R]), i.e., its unitary
transformation
dn
[na[R))’ = 0, ([R]|na[R]) = 3 On[R]sainAlR)) (18)
A po1
by a local unitary matrix 0,[R] is still an eigenstate with the same eigenvalue. This unitary
transformation (17) results in gauge transformations of induced gauge potential one-form
A(n) = A(n, R) and its corresponding field strength two—form 7 (n, R) = dA(n) + A(n) A A(n),

ie.

A(n, B) = &(n, R) = Qu[R]* A(n, R)2[R] + O} (Rl R,
F(n, R) — 7'(n, R) = Q,[R]* 7(n, R)Q,[R].
We can prove that for a cycle evolution, Z(T) and Z(T); are invariant under the gauge

transformation (18), i.e. Z(T) and Z(T)s are independent of the choice of the basis |na[R]).-
In fact, we first notice that the NABPF W (n; t, to) satisfies a one-form equation

dW(n, t, to) + A(n, R)W(n, t, t,) =0, W(n, to, to) = 1. (20)
Using Eq. (19), we can directly verify that the d,, x d,, matrix
Wn, t,to) = QF[R()|W (n, t, t0)Dn[R(to)]

(19)

satisfies a similar one-form equation
dW(n, t,t0) + A'(n, R)W(n,t,t0),  W(n,to,to) =1. (21)

which has a formal solution

’

_ R(T)
W(n, &, to) = Pexp|- /R o A R). (22)
It follows from Eqgs. (21) and (22) that
R(T) R(T)
Pexp|- /; o A0 R)] = 0F[R(T)|Pexp |- /R o A R)][R(0)].

For a cycle evolution, (2} [R(T)] = 0 [R(0)] such that Tr W(n, T) = Tr W(n, T). Thus, as
we claimed, Z(T) and Z(T); do.not depend on the choice of the basis |na|R]). '
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Considering the way of transformation of A(n, m, t)
A(n, m, t) — A'(n, m, t) = QY [R|A(n, m, t)Q,.[R] (23)

under the gauge transformation (19), we easily observe the invariance of high-order correction
calculation. This is just what we expected.

IV. Some Explicit Calculations for a Model Relating to NQR and
Kramers Molecule

In this section, with a model relating to the NQR and the Kramers molecule with double de-
generacy, we do some explicit calculations about path integration of the transition amplitude.
The similar problems have been discussed in the contexts of Born-Oppenheimer approxima-
tion by Moody, Shapere, Wilczek and Jackiw|5], and the usual adiabatic approximation or
HOAA by Segert, Zee and one of the present authors (C.P. SUN)[6’7], but a different context
— the path integral formulation is concerned here.

The Hamiltonian for the model is

7 ST o hlata), (24)

where 7i(z) = (sin (2) cos ¢(2), sin 0(z) sin ¢(z),cos0(2)) is a unit vector parametrized by the

=2

spatial coordinate z. For a given instantaneous value of z, the Hamiltonian h(7) of the fast

part has doubly degenerate eigenvalues

Elml (Z) = mzwo(z) 1’ m=j3735-1---,-7, (258.)
and the corresponding eigenstates

| sm(7)) = exp [—iJ. é(2)] exp [—3T.0(2)]} 5, m), (25b)
where |7, m) is a standard angular momentum state. With the two-dimensional eigen-space

[m] {Ij,:tm(n))} as a fiber and the sphere 52 {7 € R®||fi| = 1} as a basis manifold,
we deﬁne a non-trivial fiber bundle: F,, : {(n, () )|n € S2}, whose structure group is U(2).
According to Refs. [6] and [7], the structure has a reduction to the Abelian group U(1) in
the case with m # 3 1. Therefore, we only consider a more complicate ca,se, m= 1 . Denoting
|7, 3(7)) and |, ——(n) respectively by ||m| =1, a = 1()) and ||m| =3, a = 2(n)), ‘we have
the potential one-form!”!

A%, 2) = —%{ [cos 8(z)os — (j+ ;) sin H(z)al] dé(z) + (] + )0’2(10(2)} (26)

The induced topological action

T
. 1, .. .
Zy(T) = /[dz]Pexp [z/ (—Mz2 — Eyja(2) + As(z)z) dt] (27
2 0 2
corresponds to the matrix-value effective Hamiltonian
R —17d .,y \2, 1
o= 537 ( = 14(3)s) + Geol?)

. d 1, 2
_ —_1 - - 54’ (z) cosﬁ(z), B +lw0(Z), (28)

= dz d
M B; + ¢ (2) cosb(2)

dz
()= 2402), P = Lo(a),



No. 4 Non-Abelian Induced Topological Action for Slowly Changing - - - 433

where 8; = 1(j + 1)[—i8'(z) + sin0(z)4'(2)], and Bz = L(j + 1)[i6'(2) + sin6(z)¢'(2)].
The similar result has been given by Moody et al. and Jackiwl®l from Born-Oppenheimer
approximation.

-

In the following two cases the NABPF W (1,,20) = Pexp[— [3 A(3, n)] can be integrated
out.

Case 1: f=constant:

114, A
Wi(i, ¢t t) =~ ’ 29

(2’ 0) A [AS, A4] ’ ( )
where A; = icosfsinT(t,t0) — AcosT(¢,20), Az = —i(5 + 1) sinOsinT(¢,to), As = —i(5 +
1) sin 6 sin T'(t, ¢o), Ay = —icosfsin T(t,to) — AcosT(t,20), A = [(5 + é—)zsin2 8 + cos? 6] 1z
and T(t,t0) = § J;, Dlz(t")]dt'. :

Case 2: ¢ =0:
WRREL t t,to), —sina(t, t
W(3, ¢, to) = exp[—;- (] + 5)02 /to f[2(¢ )]dt] = [:::‘((t’ tz)), co:l:((:,(to)O) . (30)
where

B YRS SN A TP
a(t,to) = 5(] + -2-) /;o f[=(t"))dt’ .
Then, we have

2(T) = 2cos[ k(5 + 3 ) (6(7) - 6(0))] / [dz] expi /0 ) (M2~ Jwo(=(e))de],  (319)
2(1)s = 2co8 k(5 + 2) (O(T) - 6(0))] exp /o . Jwo (357)] Zo(J), (31b)

2o(0) = [ o2z 2 exp{;iM[z(T) ~ (OPPT + (i T-2(0) /0 rey T - )ar

r o (31¢)
+iT1(T) /0 J)dr) = /0 Car /0 (T = )rI(#) I (),
where k = {(; ;Z: Z:: ;’ Especially, when wo(2)/4 = €0 + Bz, we have
2'(T) = —B(2(0) + 2(T)) cos [%k(j +3) () - o(o))]\/‘f—f exp [%MM] .

Now, we calculate the non-adiabatic corrections corresponding to the diagramé with two loops
and three loops respectively as shown in Figs. 2a and 2b. Here, we only discuss case 2 because
case 1 can be studied in the same way.

@ | ®)

Fig. 2. The non-adiabatic corrections for two loops and three loops.
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By direct calculation, we obtain

Tl(L, it t0) =0, (32a)
T, 2,¢,60) = er exp[ 2,/ wo(z(tl))dt] (L2, W3, t)
(32b)
—c£ dr{ﬁ(z('r)) exp[ 21/ wo(z(t')dt] [_ ] }
with Ag = cos[(t) — 8(r)], Ae = sin[f(t) — 6(r)] and
Fe(L, 4t t0) =3 /t ar /, dui(a(r))d(<(e)) exp [ / ola(e'))ar
’ (32¢)

cosfl(t, 7, s, to), sin (¢, 7, s, ¢o)
—sinfl(t, 1,8,t), cosQlt,1,s,t0)

where we have cons1dered
A 2 ) =-4(3 39 = —-\/_vao(z(t)),
3 3

A3, 3,0 =0, A% 1) = —iboy,
and defined Q(¢, 7, s, to) = 8(t) — 6(r) + 0(s) — 0(¢o). It immediately follows from Eqs. (32c)
and (8c) that the transition amplitude from state 12 8(R(to))) to state |3a(R(t)) is f1(B —
a) K‘ol(t to)xa ,}p+K(2](t to)%a }p) &8

fi(1—1) =/[dz] exp iSo -1 /t.owo(z)dt'] {cos 8(z) + %/‘d‘r ?da cos (¢, , s, to)}.

to to

(33)

Finally, it should be pointed out that the matrix 7] lll(%, %, t, to) only contributes the tran-
sition between states |na(to)) and |mp(t)) (m # n) other than that between states |na(to))
and |nf(t)).

V. Two Remarks

1). Considering that the effective Hamiltonians (16) and (17) can be derived by the Born-
Oppenheimer approximation, we naturally expect that the higher-order corrections obtained in
this paper are achieved by the generalized Born-Oppenheimer approximation method proposed
by two of the authors (SUN and GE)I®l for non-degenerate cases. This will require some
further works based on Ref. [5]. 2). Because the slow variables R or their functions such
as n(z) usually form a manifold, we can not use a single coordinate system to cover the
whole manifold, several coordinate charts are needed_for the problem and some interesting
geometrical phenomena such as the path-phase factor{1%. These discussions will be prepared
for publication.

Appendix: New Formulation of the HOAA Method

In this appendix, a new formulation of the original HOAA method!® is derived by asso-

ciating it with Wu’s work!®l. The new formulation is convenient for concrete calculations.
Let

[#(e) = chm.(t) exp [ [ Butr)o] el (A1)

a=1
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be a solution of the Schrédinger equation i [$(t)) = A[R(t)]|%(t)). Then,
Cn(t) + Aln, t)Ca(t) = — D expliwnm(t)]A(n, m, t)Cm(t), n=1,2---, (A2)

m#n
where we have defined
Cu(t) = (Cra(t), Crzlt), -+, Cna, (8))7 . (A3)
According to Refs. [8] and [9], we can regard the terms on the right-hand side of Eq. (A2) as
perturbations so long as parameter R changes slowly enough. Using the perturba.tion theory
of the linear differential equation, we obtain

oty =S ey,
B01(6) + An()OI)(8) =,

Cl(to) = (na[R(t0))1¥(0)) (A4)
C() + An(t)CH(E) = = Y expliwnm (t)]A(n, m, t)CLL~1(2),
m#n

() =0, 121, n=12--.
The above equations have formal solutions
(Cll(t) = W(n, ¢, to)Cl%(to)

t .
Cillll(t) == E / dT W(n, t, 1)eiwnm(‘r) .A(n, m’ T)C'['l‘—]_l (1_)
to

m#n

=(-1)} z Z E z .‘/;:dﬂ‘l/:ddn_z.”

) n_1#n ni_3#£n; ni#ng no¥n, (A5)

T2 T
X_/ dry| droW(n,t,n_1)A(n,n—1,n-1) exp [fwpp,_, (11-1)]
t

0 to

1
x T {W (e, s 1) Aln, mrmt, 1hmr) exp [0y, (7e-1)]}

k=l-1
§ XW(no, 70, to)C,[g] (to) .
Substituting Eq. (A4) into Eq. (A1), we have

dn,

e ={3 3 exo[-i /t ' En, (R4 | (no, ¢, to)aasy

no ag,fo=1
x|noco[ R(e)])(moBolR(t0)]l }¥(0)

dn; dno

B ={X > > > e[~ /t:Em[R(t')]dt'] /t:W(nl,t, A

n1 no#ny f1=1 ao,fo=1
X A(n1, no, t1)8, a €XP [fwnyno (81)]W (o, t1, to)aes, dt1
x nea[R(£)]) (noBolR(zo) ]I} 1$(0)),
(A6)
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ORI E i DD DD 3D

ni-1#n ni_a#ni-a ni1#n; no#Eny

/dn 1/ / d‘rl/ dry W(n,t n-1)A(n, ni—1, n-1)
to

X exp ["wnn;-l (n—-l)] H {W(nkx Tk Tk—l)A(nky Nk—1, Tk—l)
k=l-1

X exp [y (7e-1)}W (o, 7, t0)) _Inal RO (molR{to) |} 19(0)),

1=1,2,3, -

By considering

W) = U )9(0)), Ut t0) =3 UM (e, o),
1=0 (A7)

9l (#)) = U, )9 (0),

the formulas in Eq. (4) can easily be obtained from the above equations.
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