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Abstract

The infinite-dimensional indecomposable representations are constructed by using the purely
algebraic method and the matrix elements for these representations are obtained in an ex-
plicit form. Each familiar finite-dimensional irreducible representation is induced on a quo-

tient space.

I. Introduction

The interest in the Yang-Baxter equation (YBE)|1'2] has significantly increased recentlyl3].
Drinfeld and Jimbo have found the intermate relation between the solutions of the quantum
YBE and the irreducible representations of the quantum groupl*~7l, At present, considerable
researches have been focused on the representation theory of the quantum group. Besides
Reshetikhin’s work about the irreducible representations of the quantum groups associated
with constructing the universal R-matrix!8!, there are other methods to realize the, quan-
tum group and to obtain its representations. The interesting one of them is the g-deformed

sl°=11, However, in previous

Boson realization presented independently by different author
works people only paid their attention to the irreducible representations and did not concern
with another type representations, e.g. the indecomposable (reducible, but not completely
reducible) representation. Since a quantum group is only a g-analogue of Lie algebra and the
indecomposable representations of Lie algebra have been well investigated by some authors by
using different methods!2~1¢l, in our opinion, it is considerable to study the indecomposable
representations of the quantum group so that the representation theory of the quantum group
has rather complete development. In this paper, we will construct and study the indecompos-
able representations of the quantum group SU(2), and associate one of them with the usual
irreducible representations. The method used here is very similar to that used by Gruber et al.
for Lie algebral’213 and can be directly generalized to investigate other quantum groups. We

consider only the case thatAq is not a root of unity.

II. Quantum Group SU(2), as an Associative Algebra

Let A be an associative algebra generated by the operators J;, J_ and J; satisfying the
generating relations
‘ [J+; J—] = [2']3] ) [JS) J:i:] = :tJ:l: ) (1)
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where the definition

J g7
[f]= qq—_-aqzl— , g € the field € of complex numbers (2)

holds for any operator f or number f. Considering that, as ¢ — 1, equation (1) becomes the
‘commutation relations

[Jy, J-] =205, (s, Ji] = 22, (Ja=Jalgm1, a=4, 3) (3)

of Lie algebra SU(2), we regard A as a g-deformation of the universal enveloping algebra of Lie
algebra SU(2). ‘Now, we call it g-analogue of universal enveloping algebra of SU(2). Choose
a basis {J§ J2Jlla, B, ¥ =0,1,2, -} for the associative algebra A and define K = ¢*’s.
From Eq. (1), we can obtain the multiplication rules K

KJ,=¢*JyK, KJ.=q¢q%J.K, K 'Jy=¢%J,K,
—K-! 4
K-'J_=q¢q*J_K™ !, [J+,J-]=(K_Ii1). (4)
- (g—-q¢7%)
Equation (4) shows that the operators Jy, J_, K and K~1 generate a subalgebra SU(2), of
A, which was called the quantum group of Lie algebra SU(2) according to Drinfeld. Here, it
is needed to point out that some authors also call 4 quantum group SU(2),, but it does not
represent the substantial problem so long as we make the definition clearly.

The following multiplication relations, within the associative algebra SU(2),, will be needed
in order to calculate the matrix element for the various representations of SU(2),.

KJ3 =¢"JIK, KJt =q~?"J"K , (5a)
K Y=g JrK™', K 'r=¢"JrK™?, (5b)
J_K"=g"K"J_,  J_(K"')*=¢T(KTY)I, (5¢)
J-J3=JRJ_ +[n)J2 g™ KT~ " K) (g - ¢7Y) Y (5d)
JpJ? = J2J +[n)J2 g " K — " KT ) (g - 7). ()

The above equations (5a-5¢) can be proved from Eq. (4) by induction. In the following sections,

~ we choose a basis

JPJCKT, form,n=0,1,2...;r=12,...
X(m,n,r)=JTJIK =41, form=n=r=0 (8)
JPJM(KTY)Tr form,n=0,1,2,...; r=-1,-2,...

for the associative algebra SU(2),.

III. Regular Representation of SU(2),

‘Since 8U(2), is an associative algebra, its natural representation can be constructed on its.
own linear space by the left transformation action p: SU(2), — Edv(SU(2),)

plz) u=z u, Vu, z € SU(2), .
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On the basis (6) for SU(2),, this representation is explicitly written as
[ p(J+)X(m, n, r)=X(m+1,n,r7),

p(J_)X(m, n, 1‘) = X(m, n+1, r) + q l”;]—l

g™ X (m =1, n, r = 1) + g™ X(m—1,n, r+ 1)}, ()
p(K)X(m, n, r) = qz'"“"""X(m, n,r+1),
AP(K—I)X('"» n, r) = q2n-1mx(m’ n,r- 1) '

In comparison with Eqs. (5a-5¢) the representation (7) is very similar to the master represen-

tation for Lie algebra!’’12| and mathematically called regular representation!!?]. The regular
representation (7) is an infinite-dimensional and quite general. On the basis of certain invariant
subspaces and quotient spaces for SU(2),, the regular representation can respectively subduce
and induce various representations containing the usual irreducible representations. It can
be seen from Eq. (7) that the action of p can only increase the index of vector X(m, n, r),
whereas indices m and r can be either increased or decreased. Thus, for any given positive in-
teger N, there is an invariant subspace Vy with basis {X(m, n+ N, r)jm, n,r =0, 1, 2, ...},
on which representation (7) subduces a subrepresentation of SU(2),. On the quotient space
Qn = SU(2),/Vn with respect to Vi, a quotient representation of SU(2), is induced. Be-
cause Vy/ is an invariant subspace of Vy when N’ > N, equation (7) also induces'a new
quotient representation of SU(2), on each quotient space Q(N, N') = Vi /Vy:. Then, various
representations of SU(2), are obtained from the regular representation (7).

Obviously, there exists a sequence of p-invariant subspace

N=VoVioVo2---DVyDVN41D -

and the regular representation has a semidirect sum structure r
’ 'po,*,*...*...'
' 0, p,, * *
= nionomtnys.m | 800 .
0,0,0, - py

where each * is a nonzero matrix and p, is a quotient representation induced by p on the
quotient space Q(N, N + 1). On the basis {Xny(m, r) = X(m, N, r) Mod Vy41|m, r =
1,2,...} for Q(N, N +1), the explicit expression for py is given by

(Pn(J+)XN(m, ) = Xn(m+1,7),

oI X, 1) = L (9 Koy (m = 1, = 1)
‘ W Xy (m— 1, r + 1)}, ()

o (K) Xn(m, r) = ¢2™~2N Xy (m, r + 1),
\ PN(K_l)XN (mx r) = q—2m+2NXN(m1 r— 1) .

It is easy to check that p,, forms an infinite-dimensional nonunitary representation of SU(2),.
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IV. Representations Reélated to Left Ideals

For a given element b of SU(2), and a given complex number £, the associative algebra
SU(2), has a left ideal L(b, £) = {X(b— 1, £)|X € SU(2),} as a p-invariant subspace. On the
corresponding quotient space Q(b, §) = 1/ L(b, £), the regular representation p can induce a
new representation of SU(2),. In this way we can obtain various representations so long-as we
properly choose b and £ so that Q(b, £) is not trivial. In the case with £ = ¢?*(A € €) and
b= K, the quotient space Q(K, ¢**) with the basis

{X(m, n) = X(m, n, 0) Mod L(K, ¢**)|m, n=0,1,2 -}

carries a representation of SU(2),

p(J+)X(m, n) = Xpo(m+1,n),

p(J_)X(m, n) = X(m, n+ 1)+ [m]2n—m+1- 2)|X(m -1, n)
p(K)X(m, n) = ¢?™~2n+22 X\ (m, n) ,

p(K~1)X(m, n) = g?n2m=2A X (m, n) .

(10)

The representation (10) is also an indecomposable representation of SU(2),. It is easily seen
from Eq. (10) that there exists an invariant space Sg : {X(m, R+n)|lm, n=0,1,2, ...} for
given R = 0, 1, 2, .... On the quotient space Sg/Sg+1 with basis {X(m) = X(m, R) Mod
Sr+1lm =0, 1, 2, ...}, equation (7) induces a new representation '
Pr(J+)Xr(m) = Xr(m +1),
Pr(J-)XRr(m) = [m][2R - m+1—2A\]Xg(m —1)
Pr (K)XR(m) —_ q—2R+2m+2AXR (m) ,
ﬁR(K—l)XR(m) - q2R—2m—2AXR(m) .

(11)

This is a Verma representation with the lowest weight A — R and the corresponding weight
vector is X (0). Then, the representation (10), a reducible representation, is decomposed into
a semidirect sum of the representations po(R =0, 1, 2, ...),i.e. '

p= ﬁoéﬁléﬁzé . @pNé .
When 2() — R)=integer, equation (11} is still reducible, but not complete reducible, i.e.

representation (11) is indecomposable. In fact, there are two extremal vectors Xg(2R+1—2))
and Xg(0) such that

Pr(J-)Xp(2R+1-20)=0, Pr(J-)XR(0) =0,
i.e. pp has an invariant subspace
W(2R+1-2)) : {Xg(2R+1-2XA+m)im=0,1,2, --}

with the extremal vector X(2R + 1 — 2)). The quotient space with respect to the invariant
space W (2R + 1 — 2)) has a finite dimension and carries a finite-dimensional representation.

In the case with b = J. and € = A € €, the quotient space Q(J_, A) with the basis
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{Y(m, r) = X(m, 0, r) Mod L(J_, A)|m, r=0, 1,2, - -} carries a representation of SU(2),
(p(J4)Y (m,r) =Y (m+1,r),

p(J=)Y (m, r) = Ag¥ Y (m, r) + [( mjg” ™ )lY(m- 1, r—1)

1 | ____[m]q"" }Y(m -1, r+1), (12)

+
(¢-
p(K)Y(m, r) = qz”‘Y(m, r+1),
| o(K)Y (m, r) = ™Y (m, 7= 1) .

This is an infinite-dimensional irreducible representation of SU(2),.

V. Finite-Dimensional Irreducible Representation

Let us consider the representation induced by Eq. (10) on the quotient space Q(K, ¢**)/I,
with respect to the left ideal I, = {X(J+ — p1)|X € Q(K, ¢**)} for p € €. Choosing a
basis {X(n) = X(n,0) Mod I+|n =0, 1,2, -} for the space Q(K, ¢°*)/I;, we obtain a
representation

o(J+)X(n) = uX(n) + [B][2A = n+ 1X(n = 1),
pI_)X(n) = X(n +1) |
P(K)X(n) = ¢~ **22 X (n),

A(K1)X(n) = ¢**"2* X(n) ,

(13)

from Eq. (10). When 2 #positive integer, this representation is irreducible because there is
not invariant subspace. On the contrary, in the case of 2A=positive integer and let u = 0, we
have

p(J4)X(2A +1) =0, (14)

i.e. X(2A+1) is an extremal vector of invariant subspace Usy.: {X(n+22+1)jn=0,1,2,...}.
Like the regular representation, the representation (13) also has semidirect sum ‘structure and
is mdecomposable

Now, we consider the representation on the quotient space (Q(K, g**)/I;)/Uz2s with the
basis {#r(n) = X(n) Mod Uz\|n =0, 1, 2, ..., 2A}. Accordmg to Eqs. (13) and (14), this

representation is written in the following exp11c1t forms
p(J+)éx (n) = [n][2A — n + 1Jg(n - 1) ,

for n=2X;
p(I-)oaln) = ¢(n +1)jfor n<2X, (15)

p(K)$a(n) = g2 +224(n)
p(K"l)¢A(n) = an—2»\¢(n) , n= 0’ 1, 2, ceay 22 s
which has 2\ + 1 dimensions. Deﬁning the “angular momentum” basis

I\, m) = Hl([x KIA + K + 1243 (A~ m) (16)

[n'=[nlln—1]...[2][1); - -m=AA-1,..., =,
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for the representation space (Q(K, ¢?*)/I)/Ua), equation (15) is rewritten as

p(J£)IA, m) = (A Fm]A£m+1))}/23A, m+1),
P(K)|A, m) = qzml'\: m), (17)
p(K=1)|A, m) =q=2™ |2, m) . |
This is just the standard form of the irreducible representation of SU(2),. The expressions ('17)
are also obtained from infinite-dimensional representation (11).

VI. Remarks

Recently, many works concerned the representation theory of the quantum group in both
cases that g is a root of unity!'8] and g is not a root of unity!*?l, but the finite-dimensional case
was discussed only. In this paper we only studied the case that ¢ is not a root of unity, because
some representations (e.g., equations (7), (9), (10) and (12)) are infinite-dimensional and non-
unitary, the theorems about finite dimensional and unitary case by Rosso and others!!8} do not
directly work. Thus we need further discussions for the general theory based on this paper.
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