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Abstract

In terms of the N-multiple direct product of Lie algebra the method of partial al-
gebraization for quantal spectrum problems is generalized to deal with the cases of
m.any-mode coupling. Using this generalized method to the antiferromagnetic Heisen-
berg model, we explicitly obtain some analytic and numeral results for the eigenstates

and eigenvalues.

I. Introduction

As a new class ‘of quantal problems, the qua,si-exactly-sdlvable quantal problem (QESQP)
has been discovered and solved by the so-called partial algebraization method of the spectrum
(PAMP)ll"al. At present, the discussions concerning this problem have ranged from the
supersymmetryl4=5l to the conformal field theories!®).

Now we briefly describe the central ideas of the PAMP as follows. For the Hamiltonian &
of a quantal system, if we can choose a proper basis for the Hilbert space such that Hhasa
block structure in this basis, i.e.,

H = diag.[h, &)
where h is an n X n matrix with small n and A’ an infinite dimensional matrix or an m x m
finite dimensional matrix with large m, then we can diagonalize h without affecting A’ and
obtain a part of the spectra of H. To this end we should try to express H as an element of the
universal enveloping algebra U(L) of a Lie algebra £ with generators T; (z: = 1, 2, ..., M),
ie.,

A=H(Ty, T, ..., Ty) = H({T}})

where H is a holomorphic function. If we can do it, & is then the Hamiltonian of the QESQP
and has a block structure on the basis for the spaces of all the irreducible representations of

L. Because a Hamiltonian H is usually expressed in terms of differential operators, i.e.,

I?:H(—iha%_m),
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the PAMP depends on an inhomogeneous differential realization of a Lie algebra. The general

formulas of this realization!® was given based on the boson realization method!7!.

In this article, the PAMP is generalized to the cases with multiple product of a Lie algebra
as dynamic Lie algebra of the system. The antiferromagnetic Heisenberg model is studied
as an example and some analytic and numeral results about eigenstates ang. eigenvalues are
obtained in explicit forms. Some information about ground states given from the calculation
is expected to be useful for the practical problems in the condensed matter physics, such as
high-T, superconductivity.

II. .®N—Generalization of the PAMP
Let
{Eay, Hii=1,2,..., MLy k=1,2,..., L}

be a Cartan-Weyl basis for an L-rank simple Lie algebra £ and V14:] be the carrier space of
an irreducible representation T4+ with the basis [A,, M,) that satisfies

E, A, 4) =0 for a positive root,
Hil|A,, M) = MF|A,, M), (1)
E:talAs; Ms) = F(A;)'.f.a,M'lAa) M, + Ot) )

where
A, = (A, A2 ---A7)
is the highest weight and
(Ml’ Mazx T MsL)

is a weight of the representation. The n-multiple product of this Lie algebra £ is
LPYN=L®L® 0L (N times)
with the generators

Eiy=1Q1I®-- ®. I QE,® I ® --®
1 2 - i i1

(2)

It

I
N
Hi(2) {®£®"'®4_11®Hk®__{1®"'®1{,-

For some practical problems in physics, the Hamiltonian is an element of the universal
enveloping algebra U(L®N) of L®V i.e.

I‘I(N):IA{(E'QH), Hy (1))

a, b m,(u 1) m{b, ]) mic,t)
Z A a(z) Xb(]) ’ 'Xc(t) '

(3)

where ford =a,b,...,cand !l =1, 7, ..., ¢,

Xy(l) € (Bals), He@)s=1,2,..., N;a=1,2,..., ML k=1,2, ..., L}
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and m(d, !) = 1, 2, .... From the irreducible representations IlAed (s =1,2,..., N) on the
spaces VI4¢] we construct an irreducible representation T'lAl of L8V as

rlAl = plasAs-An] — plas] g TlAsl @ ... g TlAN]

on the product space
yiAl = ylanda-AN]

with the basis
A, M)N = |Ay, M1) ® |A2, M2)® --- ® AN, MN) . (4)

The Hilbert space of the problem is the total space
V= Ed LV Il
A

where dj denotes the degeneracy. Because the representation Tl4] is also a representation for
the universal enveloping algebra U(£®") and H(N) € U(L®V),
NOA, MIE(N) A, MY = 550 N(A, MIA(N)|A, MY (5)
i.e., the Hamiltonian H(N) has a block structure
=Y h(A)
A
with
h(A) = (Y(A, M (N)|A, M)Y)
on the above basis. Therefore, we can diagonalize each one of the blocks iz(A) without touching
the others.

Especially, when H(N) takes the form
AN)Y=HA(E, - E_, - Hy ), (6)

each block ;L(A) is also reduced. into a smaller block structure '

. -
h(A) - E h[(A) ’
T
N N ()
. . i )
M) = (00, BN, 51D M = 3=
=1 $=1

Here, we have considered a fact that the sum
E=M+M+ - +My

of the weights is invariant under the action of E,(z) - E_,(j) and then

N
vEl = (A, S¥ |y M: = %)}
=1

is an invariant subspace of VIAl. On these smaller )i g (N)-invariant subspaces we can diagonalize
h[(A]) rather easily and thereby obtain a part of the spectra of A.
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ITI. An SU(2)®Y Case: Antiferromagnetic Heisenberg Model

The following discussion will focus on the case of L=SU(2), which is just the antiferro-

magnetic Heisenberg model

B=73 86 56), >0, (8)

where S, S, and S, are the generators of SU(2). In the case of 1-D chain, equation (8) can
be rewritten as the form (6)

N
1 At A— & o— z 2z
B =203 1545500 + 8(4056) + 250k (9)
i=1
in terms of

§* = S :l:zS

We denote by |7 m) the angular state of singlé particle and then we get a basis

N

k=1

for the Hilbert space. According to the above general discussion, we observe that the subspaces

N -
([.71:!,.]1:, win) ¢ H Tks MEK) l Z myg = }

are H-invariant. In usual Heisenberg model, the particles located on different sites have the

same spin 3, and then we only consider the cases of j1 = 72 = - - - = jn = s and define
" i o al
V(-') = (aa, 8) {Hlmk kHls; mk)‘;mk=M}.
=1 =1

For the two cases with s = 1/2 and s = 1 respectively, we obtain the dimensions of the
HA-invariant subspace

. (M] y _ N!
(Y i372) = ((872) 5 MN2) ~ M) (102)
(N~ M| eV, M)} /2
dim(v{}1) = % , (10b)

bl
1}
o

where

(N, M) = {1 - (-1 M),

= (%[M + N — 2k~ &(N, M)])!(%[N — M — 2k — &(N, M)|)\(2k + (N, M))!.
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Now, on each H-invariant subspace V(l:;‘], we can diagonalized H for given N, M and S.

On the spaces V([f;;) and V(IIA)'I ], we respectively obtain the analytic eigenstates

; N
(71 dir “(V([llj‘ll’)) m1+mz+‘~~+mN=M{k=1 ’ }

1 [N-|M]—¢(N,M}]/2 N
W=7 x5 {Him} aw)
k=0 Dm; =M, =1
Z|mi|=N-2k—e(M N)
and the corresponding eigenvalues
1\ VM 1
E(- =+4+-QJ,
(2) 1 4 (12)
E(W™ =+QJ,
where Q is the number of nearest neighbor and
[N—{M|-e(N,M)}/2 wre(nn) N1
— 2k+e(N,M) 27 *
0= > 2 A (13)

k=1
In fact, considering that

0 = ———{ > m) @@ i)

dim(V([IA/lzl)) ml+...+m“1+mi+2+"'+mN=M_.1
@ 1): ® | 1)ia1) ® |mita) ® -+ ® |mn)

+ > my) ® - @ [mizy)

myt-tmio1+tmigattmy=M

O 1) ® [ Iir1+] 1 ® D)ig1) @ [mita) @+ @ [my) + D D [m1)
mi+--+mi_14+mipz+-+my=M+1

@+ ®|m) @ (| 1) ® | 1)is1) @ Imisa) @@ |mn)

and §(3) - §(: + 1) has three degenerate eigenstates
11
@ =| (5:5) 1 1),

i@ e =| (5, 3) 1 -1,

2' 2

[D:® | Derr+ 1@ Dis = V2| (5 5) 1. -1)

with the same eigenvalue 1/4, it is easy to verify that |¢ﬁf§ } is an eigenstate with the eigenvalue
E("{%) ;- The above conclusion for |¢f;%) ;) is also proved in a similar way. Here, we have
denoted |1/2, 1/2) and |1/2, —1/2) by | 1} and | |) respectively.

For the calculation of the eigenstates |¢f£f;{ ) and corresponding eigenvalue Eﬁ)“,f of the
Hamiltonian H of the antiferromagnetic Heisenberg model, some numeral results are obtained

and listed as follows.
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we have the eigenstates

1=

by =

and the corresponding eigenvalues

BV

e
_ve
6
_ve
6
41 2(1+ —‘[5_3-)
RS

() |

1 3
~1 2(1‘%)
_Ve
6
_Ve
6

1a-%)

i i\/i(1+ —‘g—?—’) ]

¢z =

$5 =

1
By =—(3+2v3)J ]

E;

[M=0] (ar _
V(1/2) (N—4)
Lo
2 2
1 V2
414+ X=
V't
0
0
1 V2
“Af14 ==
Vit
_L_2
2 2 |
[ 1 ‘/5-
— 414+ =
Vit
L) V2
2 2
0
0
1 1—‘/5
2 2
1 V2
14+ 1=
2V T2 .

—%(1+2\/§)J,

1
E3=—ZJ,

Ey = %(3 - 2V3)J,

Es

Es

1
Z(1—2\/§)J,

J.

PN

3 =

Pe =

° &G &f§

ol% ol% ol% 2I% °l% *I%

(14)

(15)
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On the 20-dimensional space V(l /2) (N = 6), 70-dimensional space V, 1 /2) (N = 8) and

19-dimensional space ([f)l =0] (N = 4), we use computer to obtain all the eigenstates and

eigenvalues. Because of the lack of space in this paper, we only give the energy levels of the
ground states as

E% (%) = —2.4937 J,

Ef,’“(%) = -3.3750 J (16)

EX*(1) = —4.6458 J .

IV. Discussion
It follows from Eq. (16) that the energies of ground states of each site are
1 1
= 1E%(;) = -0400 7,
=357z

(2

%EDG(%) = —0.4156 J , (17)

£ = %EO*’ (%) = —0.4219 J

respectively in the cases of 4 sites, 6 sites and 8 sites, in which the energy of ground state of
per site of the case with 8 sites is very close to the result

EO = "‘0.443 J

for infinite site chain given by Hulthens(®. In fact, as the site number of the calculation
becomes lagge, the result of calculation will approach the exact result E. The fact

|61 - &|
g

€2 — &
&

tells us that the 8-site case is good enough for the calculation of the ground state. We would

=2.78%,

= 1.49%

like to point out that Tavan has obtained the nearly exact variational wave function for the
ground state in the case with 8-site ringlg], but what we obtained is just an exact eigenfunction
of the Hamiltonian.

The method used in this paper is expected to approach other problems about many-mode
coupling.
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