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Abstract

By making use of the improved Born-Oppenheimer approximate method, we deal
with the separation of spin variable and space variable of neutral particle with ar-
bitrary spin in inhomogeneous magnetic field and non-adiabatic corrections for the
problems are thereby computed as perturbations. We also analysis the geometrical
properties of loop phase of the induced gauge potential and point out its observable
effects relating to Bitter and Dubbers’ experiment. Finally, we discuss the transi-
tions between the instantaneous spin states as non-adiabatic effects resulting from

inhomogeneity of the magnetic field.

I. Introduction

After topological Berry’s phase was discovered!!:?, it was recognized by Simon that Berry’s
phase factor is precisely the holonomy in a Hermitian bundle over the parameter space and
the quantum adiabatic theorem defines a connection in such a bundlel®l. The connection
naturally gives a gauge structure—the induced gauge structure and the gauge group corresponds
to the local unitary freedom in choosing the phases of the instantaneous eigenstates of the
Hamiltonian with slowly changing parameters. Wilczek and Zee discussed its non-Abelian
generalization for degenerate quantum mechanical systems!!. With molecular system as an
example, later on Moody, Shapre and Wilczek analysed the implications of induced gauge
structure when the parameters are themselves the dynamical variable in large system!®!. It
was shown from their work that for a quantum system (e.g. a molecule) with two sets of
variables, the fast one (e.g. electric degree of freedom) and slow one (e.g. nuclear degree of
freedom), after resolving the dynamics of the fast variable under the adiabatic condition that
the Born-Oppenheimer (B-O) approximation holds, an involved external vector field within
the effective Hamiltonian about the slow variables is just the aforementioned connection, i.e.
the induced gauge potential.

lWork supported in part by the National Natural Science Foundation of China.
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Now, a natural question is whether one can observe the direct effects of the induced gauge
field when the parameters are dynamical variable. Jackiw’s answer was that “only more in-
direct effects can be tested” and the presence of induced gauge potential is established by
studying the energy spectrum of the complete system!2]. However, in this paper, a direct
observable effects for a particle with arbitrary spin in an inhomogeneous magnetic field and
thereby a new interpretation of Bitter and Dubbers’ experiment!®) (B-D experiment) is natu-
rally given (This experiment was also interpreted from the point of view of moving reference
system and its non—adiabatic corrections was discussed with high-order adiabatic approxima-
tion method!”l by Sun, one of the authors, and Zhangls!). The key point of our discussion in
this paper is that the spin variable and the space variable for the particle are taken as the fast

variable and the slow variable in B-O approximation respectively.

We arrange this paper as follows. In Sec. II, the improved B-O approximate method is
extended to deal with the separation of the spin and space components for a particle in a
slightly inhomogeneous magnetic field, and the general formulations are given for computing
arbitrary order non-adiabatic effects. In Sec. III we use the first—order approximation to dis-
cuss the direct effects of induced gauge field for spin precession and corresponding geometrical
properties. In Sec. IV, we compute the non-adiabatic corrections in practice and analyse their

effects In experiments.

II. Formulation of Generalised B—O Approximation for Spin

A particle whose spin degree of freedom and space degree of freedom interact each other
through an external field {F,(z)} = F(z) (z = (21,22, 23) € the physical space R?), can be
described with the following Hamiltonian

=2 0?4V (@) + HF ()], (1

where h[F(z),s] is the interacting Hamiltonian.

Let h[F(z), s| have non-degenerate eigenfuctions |n[F]) (n = 1,2, N) with eigenvalues
.[F] for a frozen F = F(z) in arbitrary z. In terms of |n[F]), we can expand the solution
|#) of the time—independent Schrédinger equation H|¢) = E|¢) as

N R
Z z)|n[F ()]} , (2)
we then have
nd’n Z Onm(x)¢m( ) Ed’n(x) (3)

by direct computation, where

~

i

_%[v — iA(n)]z + V(a:) + fn(l) s (43')

n

A(n) = o(n[F(2)]| 7 In[F(2)]) , (4b)
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; 5 > (wlFll v R ENWFI O nlF) =6, n=m,
Onm(z) = n'#n (4c)

—2%27{2("IFII vm(F)) 7 +(n[F]|V? |Im[F])}, n#m.

Defining
$1(z) [ 011.012 -+ Oy ]
¢2(<) R Oz O - Oy
'l’ = ) 0= y (5)
én(z) | Oni On2 -+ Own |
fo = diag - [H,, Ha, ---Hy]. _ (6)

. We rewrite the above system of equations (3) in a matrix form

(Ao +Oly = Ey. (7)

It can be seen from Eqs. (3) and (4) that when the external field F(z) is completely
homogeneous, the elements of matrix operator O in Eq. (7) vanish; spin and space components
completely separate each other. Then, from the physical consideration, when F(z) slightly
depends on z, these elements are very small and O can be regarded as a perturbation. We
can use the standard perturbation theory to solve Eq. (7) order by order, and obtain

=yl pplth gl 4.
E=E0 + gl L gl2 4 ...
¥plol = Elolglol (8)
i
Hpll 4+ Opli=1] = Z EU=Vlgltl
I'=0

For example, we can explicitly obtain the second order approximate solution

E]{:,l = Onn )

1/,lll — Z <¢£2]k'|0n'n|¢£?11)¢[1]' (9)
nk e E(c:]k' _ E[Ok]: nik! 1

where the first-ordetr approximate solutions ¢Lol’s are given by

(4l = 18l(a), 0, --- OJT,

¢[2?c] = [O) q)lz(;r!(z)t Or 0]T '
4 (10a)

\ Bglk=[0’ 0, ""q)lz\(;]lc]Tv
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A,00) () = Ellol (). (10b)

Here k labels the levels of the effective Hamiltonian I?,..

According to Eq. (9), when the external field F(z) is so homogeneous that the adiabatic

conditions
0 (A 0
(‘I)L']k' |On’u I(p[nllc
0 )
B, — £l

<1, Kk,n'#kn (11)

holds, the second order approximate solutions can be neglected and one only needs to take
first order approximate solutions defined by Eq. (10b). From the explicit form of Eq. (10b)

{—%(\7 —iA(n))2 +V(z) + €,,(z)}<1>£?,1(x) = Efal%(2), (12)

we see that the effects of the spin component on the space component under the B-O approx-
imation provide with a U(1)-vector field A(n) = A{n, z) and a scalar field £,(z).

III. Geometry of Induced Gauge Field for Spin Precession

In the following discussions, we consider the spin precession relating to B-D experiment
as an example of the above discussions. In an inhomogeneous magnetic field

B = B(z) = (B1(z), B2(z), Bs(z)) ,

the Hamiltonian of a particle with spin s is

2 2

R ST TR BN R S T
H= oV +h[B(z)s]=—mV +gB(z) - 3. (13)

By making use of the angular momentum theory, h(ﬁs) can be rewritten as

h[ﬁs] — e—ia‘;¢/he—€5,8/h[hwoé\s]eié;.o/heiaa‘ﬁ/h , (14a.)

wo = gB = g|B? + BZ + B3]"/?,

B
¢ = arctg -, (14b)

p ; B,

= arctgr—s5——5775 -
[B? + B3|/?

Then, we immediately obtain the eigenvectors

[, [B)) = e 338/ e=i330/R s ) | (my=8,s—1,---—3) (15)

of h[ﬁs] with eigenvalues £,,,[B| = hwom,, where |sm,) is a standard angular momentum
state satisfying

§3|sm,) = m,h|sm,) , §%|sm,) = s(s + 1)h%|sm,) . (16)
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In the B-O approximation, the effective equations about the space components ¢, (z) in full
eigenfunction '

¥= ). ®n,(a)lm.[B])

of H are
—%lv — i A(m, 2)@pm, (z) + s W00 (2) @, () = E®pm,(3) , (17a)
A(m,, z) = m, cosf(z) v ¢(z) , m,=38,3—1-—3s. (17b)

Its solutions for the cases with w(z) = g - B =const. are

x

3ll(z) = (2x)~3/2 -exp{i/ A(m,,:c),,dz“} - exp(tk,z*) (18)

zo
with eigenvalues
2|2
E .- MK
mek o 2M

+ m,huwg .

In this paper, we define
A“D”' = A1 D, + A2D2+ A3 D5

for any 3-vectors A and D.

The path-dependent phase f:o A(m,, z),dz* appearing in <I>l,9.l,(:c) is just the Aharonov-
Borm (A-B) phase of the induced gauge field. When the particle is subjected to a cycle
magnetic field B(z) (B(zo) = B{z)) from z, to z;, this phase becomes a loop phase, which is
similar to the Berry’s phase. In fact, a mapping B from R3(z) : {z} to R®(B) : {B} enables a
path [ : {z(t)} with starting point zo and end point z; of the particle in R3(z) corresponding
to a closed path (loop) C : {B(z) : B(zo) = B(z1)} in R*(B). Under this mapping, the A~ B
phase .

ABP = / ' A(m,, z)dz*

[}

defined on the path [ is written as a loop integration along the loop C, i.e.

Yms(c) = ABP = i/:

Zo

malB]| 50— | mal Bz
o, g j (19)
= i f(ma1B}| 55 | m (BB,

However, this phase is over-defined by a loop C in R3(B), because two loops C{B(z)}
and C'{B'(z)} have the same projective loop € on §2:

{A(=)l7i(z) = B(=)/|1B(=)|} = {8(s), 4(=)}

(fi(z) is a Kronecker mapping), and have the same phase, i.e. Yms(c) = Yms(c'). Thus, ym4(c)
is defined by a class of loops [c] = {¢'|{c = A(z)B(z)}, A(z) is a real functions of z € R3(z)},
i.e. any loop in the class [¢c| corresponds to the same phase ym,(c). If C,C’' € [C] then

Yms(€) = Yms{c’). Thus the v,,,(c) can be regarded as a topological function in class space
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V. : {[c]} and denoted by ~s[c]. The above geometry of induced gauge field is illustrated in

Fig. 1.
| ¥
E
B(z0) = B(z,) ’
Z2
T1
B,
Fig. 1

IV. Observable Effects of Induced Gauge Field

Like the A-B phase factor of a usual gauge potential, ym,(c) is observable in experiments.

We consider a double-slit experiment slightly differing from that proposed by Berry first. A
beam of particles with spin s initially polarised in state |m,[B(zo)]) at position zg at time ¢ = 0,
splits two beams. One of which passes through a constant magnetic field B = B(z), while
the other passes through such an inhomogeneous magnetic field B(z) that |B(z)| = |B(zo)|
and the B-O approximation holds. After time T', the two beams combined in a detector at a
position z; such that B(z;) = B(zo), which have: two wave functions respectively

[91(0)) = exp[~4E,,,¢ 7 | explikus®) explivimslellimi  Bz)])

(20)
. T . =
[2(t)) = exp [—zEma,-c-g] exp(ik,z"]|m,[B(zo)]) .
Then, we obtain from Eqs. (20) the predicted intensity contrast of particles
2 2[1
1= [l61) + 92} = Tocos? [ 5malc]] - (21)

This manifests an observable effect of induced gauge field.

Finally, we would like to point out that the B-D experiment is only a specific case of the
above discussions with spin 1/2 and a certain magnetic field

TR . 2rzz . 2mz3
B(z) = B(51n0cos I sin 4 sin — o cos 0) ) (22)
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where § = const. What is observed in the B-D experiment is the polarization of neutrons

through B(z) for z3 = L at t = T, our discussions give the wave function of neutron

W(7,1) = {cos - exp[iB), - T] exvlimalel | 5. 5B

+ sin gexp[-El_o,]-c»/2 . %] expliy-1/2[c]] , %'—%IE(L)}>}
'(27r.)_3/2 explik,z#]
= o(T) | %%) +4(7) | %%)

for the neutron beam being initially in the state |+1/2) and thereby we obtain the polarization
of neutron along the z3-axis

(23)

ps = |a(T)[? = [B(T)[* = 1 - 2sin*[woT + mz[el],
1 (24)
wo = EgB .

V. Non-Adiabatic Effects

If the magnetic field is not uniform enough to neglect the perturbation O in Eq. (7), we,
at last need to consider the lowest order approximation resulting in non-adiabatic effects, i.e.
the second order approximation.

According to the general discussion in Sec. II, we have effective equation about the space
component

Hpi®mu(z)+ D Omym,®ms(z) = E®pm,(z) . (25)

m'.#"‘l

By direct computation, we have

( . 7r2h2 .2 2
O(m,m) = 3z S f[s(s + 1) — m7],
o K2 —
(0] +1l)=—- : )
(m,m=+1) 2qu:(s,m:t 1)F; - [2v +i(2m 1) cosf v 4] , (26)
2
O(mm=2)= —;Mf;(s,m +2)fx(s,m+ 1) Fy - Fy,
Lé(m,m’)=0, m#£m, mzl, mz+2,
where
fe(s,m) =ls(s +1) = m(m = 1)]2,
. 1 (27)
Fz(z) = E[iv f+1isinf 7 4.
For a cértain magnetic field, we obtain the second order approximation solutions
b _ (o] _1nplol
Yok = 6(+1)¢m.+1~E-EA (z) + 6( 1)¢m,_1,75+§,‘ (I) (28)
0
2, g, () 2, (9),
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where .
(3m, +1/2)2rcosf + k3L|f+(s,m,)
hwo + EA . (I-C.A F 27(7‘) . 7"&2/2M

rh?
ML2[
e(+1) =

232 (29)

e(+2) = W’f(”'f)fi(j,mi 1)
hwo + 2k4 - [ka F k|- h2/2M

are first—order small quantities and can be neglected under the adiabatic condition

h hks
——— 1
wo AlL2 <b

<1 30
WMIog <1 (30)
which imply that E(x) = B(z3) is uniform and strong (for large L and wo = ¢B respectively)

and the velocity along z-axis (v, = hk,) is small enough. This time, the B-O approximation
works well. )

From the second approximate solution (28), we see that after the particles pass through
B(z) from z, to z,, there exist the transitions from |m,[B(zo)]) to |m,[B(z)]), (m! = m, %1,
m, =+ 2) with the probabilities

p(my — m) o Je(£1, £2)[? |

These transitions are manifestations of non-adiabatic correction in experiments.
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