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Abstract
The efficiency at the maximum power (EMP) for finite-time Carnot engines established with the
low-dissipation model, relies significantly on the assumption of the inverse proportion scaling of
the irreversible entropy generation ΔS(ir) on the operation time τ, i.e. ΔS(ir)∝ 1/τ. The optimal
operation time of the finite-time isothermal process for EMP has to be within the valid regime of
the inverse proportion scaling. Yet, such consistency was not tested due to the unknown
coefficient of the 1/τ-scaling. In this paper, we reveal that the optimization of the finite-time
two-level atomic Carnot engines with the low-dissipation model is consistent only in the regime
of ηC= 2(1− δ)/(1+ δ), where ηC is the Carnot efficiency, and δ is the compression ratio in
energy level difference of the heat engine cycle. In the large-ηC regime, the operation time for
EMP obtained with the low-dissipation model is not within the valid regime of the 1/τ-scaling,
and the exact EMP of the engine is found to surpass the well-known bound η+= ηC/(2− ηC).

Keywords: finite-time thermodynamics, low-dissipation model, quantum heat engine, efficiency
at maximum power, irreversible entropy generation

1. Introduction

Converting heat into useful work, a heat engine lies at the core
of thermodynamics, both in classical and quantum regimes
([1–4]). Absorbing heat from a hot thermal bath with the
temperature Th, the engine outputs work and release part of the
heat to the cold bath with the temperature Tc. The upper limit
of the heat engine working between two heat baths is given by
the Carnot efficiency ηC= 1− Tc/Th ([1]). Due to the limita-
tion of the quasi-static cycle with an infinitely-long operation
time, the heat engine with Carnot efficiency generally has
vanishing output power and in turn is of no practical use. To
design the heat engine cycles operating in finite-time, several
practical heat engine models have been proposed ([5–7]), such
as the endo-reversible model ([8–12]), the linear irreversible
model ([13–15]), the stochastic model ([16, 17]), and the low-
dissipation model ([18–25]). The efficiency at maximum power

(EMP), is proposed as an important parameter to evaluate the
performance of these heat engines in the finite-time cycles.

The utilization of the low-dissipation model ([18–21,
25, 26]) simplifies the optimization of the finite-time Carnot-
like heat engines. As the model assumption, the heat transfer
between the engine and the bath in the finite-time quasi-iso-
thermal process is divided into two parts as follows

t = D -Q T S S , 1h,c h h,c h,c h,c
ir( ) ( ) ( )( )

where ΔSh=−ΔSc=ΔS is the reversible entropy change of
the working substance and t= SSh,c

ir
h,c h,c

( ) is the irreversible
entropy generation which is inversely proportional to the process
time τα. Optimizing the output power P(τh, τc)= [Qh(τh)+
Qc(τc)]/(τh+ τc) with respect to the operation time τh and τc,
one gets the optimal operation times ([18]) as
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and the efficiency at the maximum power η* bounded by the
following inequality as ([7, 18])
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Due to the simplicity of the model assumption and the uni-
versality of the obtained EMP, the low-dissipation model
becomes one of the most studied finite-time heat engine models
in recent years ([19–25]).

It is currently agreed that ([21, 25–29]) the low-dissipa-
tion assumption is valid in the long-time regime of τ/tr? 1,
where tr is the relaxation time characterizing the time scale for
the work substance to reach its equilibrium with the heat bath.
The quasi-static process is achieved with τ/tr→∞ . The
short-time deviation of irreversible entropy generation from
the 1/τ-scaling has been clearly demonstrated theoretically
([21]) and experimentally ([29]). And the dissipation coeffi-
cient Σ of the 1/τ-scaling is determined by both the coupling
strength γ∼ 1/tr to the bath([21, 29]) and the control scheme
([26, 29]). Such a relation implies that the condition τ*/tr? 1
is not fulfilled simply and should be justified to reveal the
regime of validity. In this paper, we check the consistency of
the obtained EMP with a minimal heat engine model con-
sisting of a single two-level system. In section 2, we analy-
tically obtain the regime, where the optimal operation times to
achieve EMP are consistent with the low-dissipation
assumption. And we further show the possibility of the exact
EMP of the engine to surpass the upper bound of EMP, i.e.
η+, obtained with the low-dissipation model in the large-ηC
regime in section 3.

2. Self-consistency of the low-dissipation model in
deriving efficiency at maximum power

The two-level atomic heat engine is the simplest quantum engine
to demonstrate the relevant physical mechanisms ([21, 26,
30–32]). The energy spacing of the excited state ñe∣ and ground
state ñg∣ is tuned by an outside agent to extract work with the

Hamiltonian w s= H t ,z
1

2
( ) where s = ñá - ñáe e g gz ∣ ∣ ∣ ∣ is the

Pauli matrix in the z-direction. The Planck’s constant is taken as
ÿ= 1 in the following discussion for convenience. For the finite-
time quasi-isothermal process with the duration τ of the two-
level system, the low-dissipation assumption of the 1/τ scaling
is valid in the regime gt 1 ([21]), where g g w= =-t T2r

1
0

in the high temperature regime. Here γ is the coupling strength
between the system and the bath with the temperature T and ω0

is the initial energy spacing of the system during the process.
The finite-time Carnot-like cycle for the two-level atomic

heat engine of interest consists of four strokes, two isothermal
and two adiabatic processes. The schematic diagram of the
cycle is shown in figure 1. In the figure, wh

i and wh
f (wc

i and wc
f )

are respectively the initial and final energy spacing of the
working substance in the high (low) temperature finite-time
quasi-isothermal process with duration τh (τc), which is shown

with the red (right) [blue (left)] solid curve. The total operating
time per cycle is t= τh+ τc. Here, we have assumed that the
interval of the adiabatic processes, plotted with the black
(horizontal) solid lines, are ignored in comparison with τh and
τc ([18, 21]). Such assumption can always be satisfied when the
two-level system has no energy level crossing, namely, ω

(t)= 0, during the whole cycle. (Since the eigen-states of such
systems do not change with time, namely, ñ =e 0∣  ( ñ =g 0∣  ),
the quantum adiabatic conditions wá ñe g t 1∣ ∣ ( )∣  and

wá ñg e t 1∣ ∣ ( )∣  are always satisfied with ω(t)≠ 0 ([33, 34]).
Therefore, we can tune the energy spacing of the system
fast enough to make the corresponding duration of the adia-
batic process negligible compared to the time scale g-1 of
the isothermal process). The quasi-isothermal process retains
the normal isothermal process at the quasi-static limit of
τh(c)→∞ .

For simplicity, we focus on the high-temperature regime,
where the reversible entropy change ΔSα and the irreversible
entropy generation coefficient Σα in equation (1) are analy-
tically written as ([21])
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i( ) , and the natural unit

kB= 1 and ÿ= 1 are used. To obtain the above equations, the
relations w w=T Th

i
h c

f
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f
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i
c have been used in

the quantum adiabatic processes ([21, 31]). Substituting
equation (5) into equations (2) and (3), we obtain the corresp-
onding optimal operation time ta* for achieving the maximum
power with the dimensionless time t t g tº =a a

a
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The low-dissipation assumption is valid in the regime t 1h*

Figure 1. Schematic diagram of the finite-time Carnot-like cycle for
a two-level atomic heat engine. The horizontal axis and the vertical
axis represent respectively the energy spacing ω and excited state
population pe of the two-level atom. The red (right) and blue (left)
solid curves represent the high-temperature and low-temperature
finite-time quasi-isothermal processes, respectively. The black
(horizontal) solid lines represent the adiabatic processes.
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The above two inequalities are fulfilled when
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where d w wº h
f

h
i is the compression ratio of the heat engine

cycle in the quasi-isothermal process, and the restriction δ> 0
is required to avoid energy level crossing of the system as we
mentioned before. Similar discussion can be applied to the low-
temperature regime, where ΔSα and Σα have different
expressions ([21]) and equation (10) will change accordingly,
please see appendix B for details. The above relation is one of
the main results of the current work and reveals the range of ηC
in which the low-dissipation model is applicable for finding
EMP. The bound for EMP obtained in the low-dissipation
regime, as given by equation (4), thus may be not uncondi-
tionally applicable to such two-level atomic engine. Indeed, we
will show that, out of the low-dissipation regime, the EMP of
the two-level atomic heat engine is larger than the upper bound
η+ predicted by the low-dissipation model in the next section.

3. Efficiency at maximum power: beyond the low
dissipation model

With the analytical discussion above, we find the EMP
obtained with the low-dissipation model is only consistent
with the assumption of the low-dissipation model in the
low-ηC regime for the two-level system. The question is
whether the bound provided by the low-dissipation model, i.e.
η+, is still the upper bound for the achievable efficiency of the
system out of the low-ηC regime. Unfortunately, the answer is
no. In this section, we will focus the efficiency at the max-
imum power in the regime with large ηC.

By numerically simulating the dynamics of the two-level
system engine with a different cycle time, we obtain the exact
power and efficiency to find the EMP. The results in the
large-ηC regime show that: (i) the optimal operation time
corresponding to the maximum power of the heat engine does
not meet the low-dissipation assumption; (ii) the EMP surpass
the upper bound obtained with the low-dissipation model,
namely, ηMP> η+.

The dynamics of the two-level atom in the finite-time
quasi-isothermal process is given by the master equation as
follows ([21])

k= - +
p t

t
t p t C t

d

d
, 11e

e
( )

( ) ( ) ( ) ( )

where pe(t) is the excited state population and C(t)= γn[ω(t)].
k g w= +t n t2 1( ) ( [ ( )] ) is the effective dissipation rate with

the mean occupation number w bw= -n t t1 exp 1[ ( )] ( [ ( )] )
for the bath mode ω(t). The dissipation rate γ equals to γh (γc)
in the high (low) temperature quasi-isothermal process with
the inverse temperature βh= 1/(kBTh) (βc= 1/(kBTc)). The
energy spacing of the two-level atom is tuned linearly as
w w w w t t= + - Ît t t, 0,h

i
h
f

h
i

h h( ) ( ) [ ] in the high-temper-
ature finite-time quasi-isothermal process and as w w= +t c

i( )
w w t t t t- Î +t t, ,c

f
c
i

c c c h( ) [ ] in the low-temperature finite-
time quasi-isothermal process. The population of the two-
level system keeps unchanged during the adiabatic processes
whose operation time is ignored in comparison with τh and τc.

In the following simulation, we set γh= 1 and focus on the
regime of γc/γh→∞ , i.e. Σc/Σh→ 0, where the upper bound
η+= ηC/(2− ηC) of EMP of the engine is achieved according to
the prediction with the low-dissipation model ([18]). In this
regime, the low-temperature quasi-isothermal process approaches
the isothermal process quickly enough that the operation time τc
is further ignored for the optimization of the cycle’s output
power, and the relaxation time corresponding to the high-temp-
erature quasi-isothermal process is g w g= =-t T2r

h
h

1
h
i

h h( )( )  . In
this case, there is only one relaxation time in the cycle. For
brevity, in the following discussion, the superscript of tr

h( ) is
removed, namely, tr

h( ) is denoted as tr. The optimization of the
heat engine cycle is thus simplified as a single parameter
optimization problem: find the maximum value Pmax of the
cycle’s output power with respect to τh, and obtain the EMP of
the engine, h hº =P PMP max( ).

The cycles with different τh are illustrated in figure 2,
where w = 1h

i and w = 0.9h
f are fixed. The temperatures for

the hot and cold bath are chosen as Th= 10 and Tc= 9 as an
example. The relaxation time is w g= =t T2 0.05r h

i
h h( ) . The

quasi-static cycles with τh= 200tr, 10tr and 2tr are represented
by the dash-dotted line, dashed line, and solid line,

Figure 2. The finite-time Carnot-like cycles for a two-level atomic heat
engine with different operation time τh. The red (right) curves represent
the high-temperature finite-time quasi-isothermal processes with the
duration τh, while the blue (left) curves represent the low-temperature
isothermal processes. The adiabatic processes are plotted with the
black (horizontal) lines. The outermost dash-dotted curves relate to the
quasi-static cycle with τh= 200tr, while the middle dashed cycle and
inner solid cycle are obtained with τh= 10tr and τh= 2tr, respectively.
In this example, we choose w = 1h

i , w = 0.9h
f , γh= 1, Th= 10, and

Tc= 9. w g= =t T2 0.05r h
i

h h( ) is the relaxation time related to the
high-temperature finite-time quasi-isothermal process.
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respectively. The figure shows that the output work repre-
sented by the cycle area decreases with τh. Here, we
emphasize that tr is not an independent parameter, and
determined by wh

i , γh, and Th as w g=t T2r h
i

h h( ). The
dynamic behavior of the system in finite-time isothermal
process is typically characterized by the dimensionless time
τ/tr ([21, 29]). In order to unify the discussion in this section,
we did not choose different values of tr when plotting the
figures below, but fix the value of tr= 0.05. (fix the value of
wh

i , γh, and Th).
In figure 3, we show the normalized power of the engine

ºP P Pmax as the function of τh/tr with ηC= 0.1 (blue solid
line), ηC= 0.12 (orange dash-dotted line), and ηC= 0.15 (pur-
ple dashed line). In the simulation, the parameters are set as
w = 1h

i , w = 0.9h
f , and Th= 10 with changing Tc= 9, 8.8 and

8.5. The relaxation time is tr= 0.05. The maximum output
power Pmax is obtained numerically for different ηC. It is
observed from the figure that the dependence of P on operation
time τh changes with ηC. In the figure, the optimal th* decreases
with ηC and is away from the low-dissipation regime of
τh/tr? 1, illustrated with the orange dash-dotted line
(ηC= 0.12, t »t 0.5h r* ) and the blue solid line (ηC= 0.1,
t »t 1h r* ). As shown clearly by the purple dashed line with
ηC= 0.15, the maximum power =P 1 is achieved in the short-
time regime of τh/tr= 1, where the 1/τ-scaling of irreversible
entropy generation is invalid ([21, 29]).

We show the obtained efficiency ηMP at the maximum
power of the engine as a function of ηC in figures 4(a) and (b),
and plot the corresponding optimal operation time th* in
figure 4(c). We choose the final energy spacing of the two level
system as w = 0.6h

f and w = 0.9h
f respectively for (a) and (b),

and other parameters are set as w = 1h
i , γh= 1, Th= 10. The

parameters used in this figure are in the high temperature
regime, and the results in the low-temperature regime are illu-
strated in appendix B. As shown in figures 4(a) and (b), the
EMP of the engine ηMP(orange solid line) in the large-ηC regime
surpasses the upper bound of EMP, η+= ηC/(2− ηC) (black

Figure 3. The normalized power of the engine =P P Pmax as a
function of τh/tr. The blue solid line, the orange dash-dotted line,
and the purple dashed line are respectively obtained with ηC = 0.1,
ηC = 0.12, and ηC = 0.15. In this example, we choose w = 1h

i ,
w = 0.9h

f , γh = 1, and Th = 10 with changing Tc = 9, 8.8 and 8.5.
The relaxation time is w g= =t T2 0.05r h

i
h h( ) .

Figure 4. Efficiency at the maximum power ηMP (orange solid line)
of the heat engine as the function of the Carnot efficiency ηC for
different final energy spacing of the two level system(a) w = 0.6h

f

and (b) w = 0.9h
f . The black dashed line (black dash-dotted line)

represents the upper bound η+ (lower bound η−) of EMP obtained
with the low-dissipation model [equation (4)], and the Carnot
efficiency ηC is plotted with the black dotted line. The gray area
represents the low-dissipation regime predicted by equation (10).
(c) Optimal operation time th* at the maximum power as the
function of ηC. The blue solid curve is obtained with w = 0.6h

f

(δ = 0.6) while the red dash-dotted curve is obtained with
w = 0.9h

f (δ = 0.9). The other parameters in this figure are chosen
as w = 1h

i , γh = 1, and Th = 10. The relaxation time is =tr

w g =T2 0.05h
i

h h( ) .
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dashed line) obtained with the low-dissipation model. The
lower bound of EMP, η−= ηC/2, obtained with the low-dis-
sipation model is plotted with the black dash-dotted line. The
gray area represents the consistent regime as demonstrated by
equation (10). The figure shows that ηMP is bounded by η+ and
η− of equation (4) in the gray area with relatively small ηC.
Additionally, by comparing (b) and (a) of figure 4, with the
larger the compression rate d w w= h

f
h
i (δ= 0.9 for (a) and

δ= 0.6 for (b)), we illustrate the narrower the range of ηC in
which ηMP is bounded by η+. With the increase of the com-
pression ratio δ, the valid regime of optimization of the engine
with the low-dissipation model becomes smaller. And it is
consistent with the theoretical analysis of equation (10). Here
we emphasize that the gray area only represents the approx-
imate regime where the low-dissipation model is self-consistent,
not the exact criterion for ηMP to exceed η+. Moreover, in the
large-ηC regime, the EMP of the heat engine ηMP can be ana-
lytically obtained as

h
h d

d
=

- +
+

2 1

1
, 12MP

C ( )

which increase linearly with ηC as shown by the orange solid
lines in figures 4(a) and (b). The detailed derivation and dis-
cussion of the above result are presented in appendix A. We
note that the achievable regime of the EMP, i.e. ηMPä (ηC/2,
ηC), obtained in the current work is consistent with that of the
sub-dissipative engines introduced in ([35]).

In figure 4(c), the optimal operation time th* at the
maximum power (blue solid curve for w = 0.6h

f and red dash-
dotted curve for w = 0.9h

f ) decreases monotonically with
increasing ηC. For the relatively large ηC, the operation time at
maximum power th* of the engine is not satisfy the low-dis-
sipation assumption holds in the long-time regime of
τh/tr? 1. Beyond such regime, the irreversible entropy
generation will deviate from the 1/τ-scaling ([21, 29]). This
explains why ηMP is no longer satisfies the bound provided by
the low-dissipation model in large-ηC regime, and verifies our
analytical analysis in section 2. In addition, one can find in
figure 4(c) that the red dash-dotted curve is lower than the
blue solid curve. This leads to a narrower parameter range of
ηC, in which the optimal operation time th* satisfies the low-
dissipation assumption, for the heat engine with w = 0.9h

f

than that with w = 0.6h
f . Therefore, the phenomenon that the

gray area in figure 4(a) is wider than that in figure 4(b) is
explained from the perspective of the operation time.

Here we stress the connection of the current result on ηMP

in the large-ηC regime with the linear irreversible thermo-
dynamics (LIT) theory: Since the bounds obtained with the
low-dissipation model have been tested in the framework of
LIT ([36]), it seems that our results contradict linear ther-
modynamics. However, it should be noted that the equiva-
lence of the low-dissipation model and linear irreversible heat
engine model is not unconditional, but depends on specific
conditions such as long-time approximation([14]), tight-cou-
pling condition ([36]), and it only holds in the low Carnot
efficiency regime with a small temperature difference
([14, 36]). Therefore, our discussion in the large-ηC regime
goes beyond the applicable regime of LIT, and it is not

surprising that the obtained results are inconsistent with the
predictions of LIT works.

4. Conclusions and discussions

In summary, we checked whether the optimal operation
time for achieving the maximum power is consistent with
the requirement of the low-dissipation model for the finite-
time two-level atomic Carnot-like heat engines in this paper.
The low-dissipation model, widely used in the finite-time
thermodynamics to study EMP, relies on the assumption that
the irreversible entropy generation in the finite-time quasi-
isothermal process of duration τ follows the 1/τ scaling in the
long-time regime. The operation time for the maximum power
obtained from the model should fulfill the requirement of the
low-dissipation model assumption. Due to the unknown
coefficient of the 1/τ scaling, the consistency of the model in
optimizing finite-time Carnot engines had not been tested
before.

In this paper, we proved that, in the high-temperature
regime, the optimal operation times for a finite-time two-level
atomic Carnot engine achieving EMP satisfy the low-dis-
sipation assumption only in the low Carnot efficiency regime
of ηC= 2(1− δ)/(1+ δ), such bound is determined by
compression ratio in energy level difference δ of the heat
engine cycle. This observation motivated us to check the
EMP in the regime with large ηC. We calculated the EMP of
the two-level atomic heat engine in the full parameter space of
ηC. It is found that, in the large-ηC regime, the true EMP of
the heat engine can surpass the upper bound for EMP, i.e.
η+= ηC/(2− ηC) obtained with the low-dissipation model.
Moreover, in this regime, we found that the true EMP, which
is achieved in the short-time limit of τh/tr= 1, depends lin-
early on ηC.

Our study on EMP in the large-ηC regime shall provide a
new insight for designing heat engines with better perfor-
mance working between two heat baths with a large temp-
erature difference. Similar investigation to this work on the
two-level atomic heat engine can be extended to some rele-
vant scenarios, such as the optimal cycle of the refrigerator
mode beyond the low-dissipation regime. Besides, in addition
to affecting the EMP of the heat engine, the short-time effects
caused by fast driving may also influence the trade-off
between power and efficiency ([20, 21, 27, 28]), which needs
further exploration. The predictions of this paper can be tested
on some experimental platforms ([29, 37–41]) in the short-
time regime.
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Appendix A. Efficiency at maximum power in the
large-ηC regime

The heat absorbed from the high temperature reservoir reads
([21])

ò òw w= =
t

Q t p t
p

t
td

d

d
d . A1h h e

0
h

eh

( ) ( ) ( )

As shown in figure 3, the maximum power =P 1 is achieved
in the short-time regime of τh/tr= 1 for large ηC. In this case,
the excited state population can be approximated as

» +
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With this approximation, the heat absorbed is written as
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On the other hand, the heat released to the low temperature
reservoir is

ò w=
t

Q pd . A5
p

p
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0

c e
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e
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Since we focus on the regime of γc/γh→∞ , the low-
temperature quasi-isothermal process can be considered as the
isothermal process with

w
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In the two adiabatic processes, we have the following rela-
tions

w w t= =p p p p0 , . A8e c
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e e c
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e h( ) ( ) ( ) ( ) ( )

Substituting equation (A7) into equation (A5), we have
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Here, only the first order of Δpe= pe(τh)− pe(0) is kept and

Figure 5. Efficiency at the maximum power ηMP (blue solid line) of
the heat engine as the function of the Carnot efficiency ηC for
different final energy spacing of the two level system (a) w = 0.9h

f

and (b) w = 0.8h
f . The black dotted line represents the upper bound

η+ and the Carnot efficiency ηC is plotted with the black dash-dotted
line. The numerically obtained ηMP is plotted with the blue solid line,
while the orange dashed line represents the approximated analytical
result of equation (A10).
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w w=p 0c e c
f[ ( )] is used by noticing equation (A8). Combining

equation (A4) and equation (A9), the EMP of the heat engine
in the large-ηC regime (τh/tr= 1 regime) is obtained as
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where d w w= h
f

h
i is the compression ratio, and the relation

w w=T Th
i

h c
f

c has been used ([21, 31]). As shown in
figure 5, in the large-ηC regime, equation (A10) (orange
dashed line) matches the numerically obtained EMP (blue
solid line) well.

Appendix B. Low-temperature regime

In the low-temperature regime with ω/T? 1 (the natural unit
kB= 1 and ÿ= 1 are used here), the reversible entropy change
ΔSα and the irreversible entropy generation coefficient Σα in
the long-time limit are analytically written as ([21])
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respectively, with α= h, c, b =a ak T1 B( ), and g = =a
at1 r

( )
g w w-a a a aT i f( ). Substituting equations (B1) and (B2) into
equations (2) and (3), we obtain the corresponding optimal
operation time ta* for achieving the maximum power with the
dimensionless time t t g tº =a a
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Here, the relations w w=T Th
i

h c
f

c, w w=T Th
f

h c
i

c have
been used in the quantum adiabatic processes. The low-dis-
sipation assumption is valid in the regime t 1h* and t 1c* ,
namely,
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where d w w= h
f

h
i is the compression ratio of the heat engine

cycle. The above two inequalities are fulfilled when

h
w d

-

-

b w d
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- -

- - -

T
2

1 e

1 e
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h
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In this inequality, the right hand term is in the order of wTh h
f ,

which is much small than 1 in the low-temperature regime.
While in equation (10) derived in the high-temperature regime,

d d- +2 1 1( ) ( ) is in the order of 1. This implies that the
range of ηC in which the low-dissipation model is applicable in
the low-temperature regime is much narrower that that in the
high-temperature regime.

In comparison with the results illustrated in figures 4(a) and
(b), we plot ηMP (orange solid line) of the heat engine as the
function of the Carnot efficiency ηC in the low-temperature
regime in figure 6, where we also focus on the regime of
γc/γh→∞ as in the main text. In this figure, except Th is
changed from 10 to 0.05, the values of other parameters are the
same as those in figure 4, and the gray area represents the region
in equation (B7). As we mentioned in the main text that the
gray area only shows the approximate regime where the low-

Figure 6. Efficiency at the maximum power ηMP (orange solid line)
of the heat engine as the function of the Carnot efficiency ηC in the
low-temperature regime with Th = 0.05. (a) w = 0.6h

f and (b)
w = 0.9h

f . The black dashed line (black dash-dotted line) represents
the upper bound η+ (lower bound η−) of EMP obtained with the
low-dissipation model [equation (4)], and the Carnot efficiency ηC is
plotted with the black dotted line. The gray area represents the low-
dissipation regime predicted by equation (B7). The other parameters
in this figure are chosen as w = 1h

i and γh = 1.

7

Commun. Theor. Phys. 73 (2021) 125101 Y-H Ma et al



dissipation model is self-consistent, not the exact criterion for
ηMP to exceed η+. It can be observed in figure 6 that the
applicable regime of the low-dissipation model for the two-level
atomic heat engine in the low-temperature case is narrower than
that in the high-temperature case, as demonstrated in figure 4.
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