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Universal Pseudo-PT -Antisymmetry on One-Dimensional Atomic Optical Lattices∗
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Abstract We present the interesting result that under sinusoidal field detuning setting along the propagation direction
of 1D atomic lattices, the probe susceptibility response of the lattices, regardless of atomic configuration, uniformly
demonstrates pseudo-PT -antisymmetry, which by our definition corresponds to n(z) = −n∗(−z), the complex refractive
index antisymmetry along propagation axis, and when being cast back to quantum mechanical side, corresponds to
V (x, t) = −V ∗(x,−t), the conjugate time-reversal antisymmetry of complex potential. We define this as the pseudo-
PT -antisymmetry, and prove the reason for this phenomenon to be the quantum-mechanical nature described by master
equation under weak field approximation for any configuration of 1D atomic lattices. This work will help to deepen the
understanding of origin of optical response features of atomic lattices, and will certainly open up the gate to a more
rigorous, durable and flexible method of atomic optical lattice design.
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1 Introduction

Since the concept of PT -symmetry was raised by Ben-
der and co-workers,[1−2] in the past decade there has been
growing interest in the study of this area due to the fact
that non-Hermitian PT -symmetric Hamiltonian extends
the framework of quantum mechanics into the complex
domain. Although in recent years much work has been
done on the theoretical side of this issue,[3−12] up till this
day, there has not been genuine experimental realization
of PT -symmetric quantum system yet, because the PT -
symmetry requires V (x) = V ∗(−x) for one-dimensional
Hamiltonian, which demands existence of complex poten-
tial for the system, something hard to realize despite the
theoretical proposal.

Fortunately, the study of PT -symmetry found its cast
in the field of optics, thanks to the isomorphism be-
tween Schrödinger equation and optical paraxial wave
equation. For this reason, many endeavors have shown
up in realizing PT -symmetric optical metamaterials in
recent years. On one hand, artificial optical materi-
als have already shown the advantages for achieving un-
usual electromagnetic properties compared to natural me-
dia, not to mention the fact that the PT -symmetry will
certainly open up the gate to more intriguing proper-
ties, like double refraction and band merging,[13−14] power
oscillations,[15−16] coherent perfect absorbers,[17−19] uni-
directional invisibility,[14,20−21] and so on. However as a
matter of fact, most of these works are carried out on
solid-state optical systems, without much attempt to uti-

lize atomic lattices. Considering that atomic optical lat-

tices have their big advantages in real-time, all-optical

tunable and reconfigurable features in control as compared

to solid-state systems, it is of valuable importance to ex-

tend the study of PT -symmetry to this area. In recent

years several works have come into sight[22−26] on this as-

pect.

For study of PT -symmetry in optical field, when

mapping the time-dependent Schrödinger equation to the

paraxial wave propagation equation, the role of time vari-

able t in Schrödinger equation is cast to the spatial vari-

able of propagation direction (we use z in this work)

in paraxial wave equation, and the PT -symmetry con-

dition V (x) = V ∗(−x) is mapped to the complex refrac-

tive index symmetry n(x) = n∗(−x) in transverse plane

of propagation. Many works have been done under this

scheme.[15−16,27−33]

On the other hand, the question has been asked about

what if we implant the symmetric modulation of complex

refractive index n to the longitudinal direction instead of

transverse plane of optical wave propagation.[34] Inspired

by this, we propose the scheme of realizing complex re-

fractive index symmetry along the propagation direction

of one-dimensional atomic optical lattices.

Surprisingly and most interestingly, in our study

we find that under spatial sinusoidal detuning setting

along propagation direction, 1D atomic lattices of any

configuration could uniformly demonstrate pseudo-PT -

antisymmetry, by which we mean n(z) = −n∗(−z), where
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z denotes the propagation axis. When being cast back to
quantum-mechanical side, this corresponds to V (x, t) =
−V ∗(x,−t), the conjugate time-reversal antisymmetry of
complex potential V (x, t) in Schrödinger equation.

The phenomenon of universal inducement of pseudo-
PT -antisymmetry goes beyond our usual recognition that
the optical features of atomic lattices are predominantly
related to the energy level configuration of atoms, which
together with particular setting of applied fields deter-
mine the optical response features of the lattice. Rather,
it must originate from some fundamental physical features
in the atomic optical lattice system, so that it could not
see the difference between configuration details. And we
find that the reason for this phenomenon is the quantum-
mechanical nature described by master equation under
weak probe field approximation.

The article is organized as follows. In Sec. 2 we de-
fine the concept of pseudo-PT -antisymmetry. In Sec. 3
we give the proof of universal inducement of pseudo-
PT -antisymmetry under spatial sinusoidal detuning set-
ting. In Sec. 4 we present an example of pseudo-PT -
antisymmetry inducement on the family of zigzag-type
configurations. And finally in Sec. 5 we conclude the ar-
ticle.

2 Pseudo-PT -antisymmetry

The effects of parity operator P̂ and time-reversal op-
erator T̂ on quantum-mechanical coordinate operator x̂
and momentum operator p̂ are

P̂ : p̂→ −p̂, x̂→ −x̂ ,
T̂ : p̂→ −p̂, x̂→ x̂, i→ −i , (1)

with P̂2 = T̂ 2 = 1 and P̂, T̂ commute with each other.
Since a PT -reflected Hamiltonian is defined as ĤP̂T̂ =
P̂T̂ ĤP̂T̂ and the PT -symmetry requires that Ĥ = ĤP̂T̂ ,
for one-dimensional Hamiltonian Ĥ = p̂2/2m+ V (x̂), the
PT -symmetry comes down to

V (x) = V ∗(−x) . (2)

This suggests a complex potential setting, which is not
normally applicable in physical experimental environ-
ment. However the complex potential V has found its
cast in the complex refractive index n in optics.

Optical lattice can be looked on as non-magnetic
medium with no free charges or currents in it, then for
electric field propagation we have the Helmholtz equation[

∇2 +
ω2

c2
n2

]
E(x⃗, z) = 0 , (3)

where z is the variable on propagation axis of 1D atomic
lattices, x⃗ stands for any vector in transverse plane, ω the
angular frequency of the electromagnetic wave oscillation,
and c the speed of light in vacuum. In homogeneous me-
dia, Eq. (3) reduces to a scalar equation.

In our one-dimensional optical lattice model, n could
be designed as the periodic function of z, i.e. n(z + a) =
n(z), where a is the spatial period of 1D optical lattice.

Including the real background refractive index n0, we have

n(z) = n0+δn(z), with δn(z) = nR(z)+inI(z) being com-

plex and |δn(z)| ≪ |n0|. The propagating electric field is

given by E(x, z) = ϕ(x, z) e ik0z, where ϕ(x, z) is the en-

velope function. Then under paraxial approximation, the

scalar Helmholtz equation reduces to

[∂2x + 2ik0∂z + V (z)]ϕ(x, z) = 0 , (4)

where k0 = n0ω/c, V (z) = 2(k20/n0)δn(z) is the effective

potential. Notice however, that Eq. (4) is not the analog

of one-dimensional Schrödinger equation[
− ~2

2m
∂2x − i~∂t + V (x)

]
ψ(x, t) = 0 , (5)

because the genuine analog requires that time variable t

in Eq. (5) be cast to longitudinal variable z in paraxial

wave equation, and spatial variable x in Eq. (5) be cast

to transverse variable x, which is to say, V in Eq. (4)

should be a function of x, not a function of z. This means

the normal PT -symmetry requires the complex refractive

index to satisfy δn(x) = δn∗(−x) in transverse plane,

with no restriction set for z direction for 1D optical lat-

tices. Compared to this, what we realized in this paper is

δn(z) = −δn∗(−z) along the propagation direction of 1D

atomic lattices. From the point of view of PT -symmetry,

δn(z) = −δn∗(−z) corresponds to the condition

V (x, t) = −V ∗(x,−t) , (6)

which is the conjugate time-reversal antisymmetry of

complex potential V (x, t), and we call it pseudo-PT -

antisymmetry. We expect the study on the optical side

could eventually shed light on the quantum-mechanical

side, for interest of investigating V (x, t) = −V ∗(x,−t).
One may ask why in casting back the pseudo-PT -

antisymmetry to Schrödinger equation, both variables x

and t are included in potential V , while in Eq. (2) only

variable x is shown. This comes from the features of 1D

atomic optical lattices, which cause the difference between

paraxial wave equation and Schrödinger equation in spite

of the isomorphism. Since the atomic lattices are con-

structed by forming dipole traps to trap the atoms, there

is density distribution in transverse plane, which affects

the complex refractive index n, so n is not only function

of z, but also x. However along the z axis of atomic optical

lattices, settlement on any value of x does not affect the

pseudo-PT -antisymmetry, so we can express n as n(z).

3 Universal Pseudo-PT -antisymmetry on
One-dimensional Atomic Lattices

For any atomic configuration, the density matrix equa-

tions of off-diagonal terms can be expressed in the general

form of master equation

ρ̇nm = − i

~
[Ĥ, ρ]nm − γnmρnm .

The Hamiltonian can be written as Ĥ = Ĥ0 + V̂ , where

Ĥ0 is the Hamiltonian of free atom, and V̂ the interaction
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between atom and applied fields. Then since [Ĥ0, ρ]nm =

(En − Em)ρnm, the master equation becomes

ρ̇nm = −iωnmρnm − i

~
[V̂ , ρ]nm − γnmρnm , (7)

where ωnm = (En − Em)/~ = ωn − ωm is the resonant

transition frequency between energy level n and m of the

atom.

On 1D atomic lattices, we are applying a weak field to

probe the optical response. Compared to all the other

strong coupling fields, this is a perturbation, therefore

we can turn to the traditional perturbative calculation

method in nonlinear optics to carry out our calculation.

First suppose all external fields are treated as pertur-

bation, then from Eq. (7), we have the first and second

order perturbed ρnm expressed as

ρ(1)nm =
−i

~

∫ t

−∞
[V̂ (t′), ρ(0)]nm e(iωnm+γnm)(t′−t)dt′ , (8)

ρ(2)nm =
−i

~

∫ t

−∞
[V̂ (t′), ρ(1)]nm e(iωnm+γnm)(t′−t)dt′ , (9)

where the perturbation V̂ (t) is defined as V̂ (t′) = −dnm · E(t′), with E(t′) = E(ωf(nm)) e
−iωf(nm)t

′
being the field

coupling energy states |n⟩ and |m⟩ on the relevant dipole moment dnm, and ωf(nm) the frequency of the coupling field.
Since we have

[V̂ (t′), ρ(0)]nm = −(ρ(0)mm − ρ(0)nn)dnm ·E(ωf(nm)) e
−iωf(nm)t

′
, (10)

therefore

ρ(1)nm =
i

~
(ρ(0)mm − ρ(0)nn)

dnm ·E(ωf(nm)) e
−iωf(nm)t

i(ωnm − ωf(nm)) + γnm
, (11)

and we can derive from here

χ(1)
nm =

N

ϵ0~
(ρ(0)mm − ρ(0)nn)

dmndnm
(ωnm − ωf(nm))− iγnm

, (12)

where N is the atomic distribution function.

To get the second order perturbed density matrix term ρ
(2)
nm, normally we should directly bring the result of ρ

(1)
nm

into Eq. (9) for a second round calculation. But things get different here when using weak probe field approximation.

Because the probe field is so small compared to the strong coupling fields, in the first round calculation of ρ
(1)
nm, we

usually ignore the existance of the probe field. Then when calculating ρ
(2)
nm, we begin to include the effect of probe field.

This is to say, the V̂ (t′) in Eq. (8) and Eq. (9) are different by an addition of probe field. And the optical response of

the probe field is the difference between the original ρ
(2)
nm without throwing in probe field

ρ(2)nm =
−i

~

∫ t

−∞
[V̂ (t′), ρ(1)]nm e(iωnm+γnm)(t′−t)dt′ ,

and that after throwing in the probe field

ρ(2)
′

nm =
−i

~

∫ t

−∞
[V̂ (t′) + δV̂ (t′), ρ(1)]nm e(iωnm+γnm)(t′−t)dt′ ,

where under the assumption that the probe field is coupled to energy level |k⟩ and |l⟩,
δV̂ (t′) = −Σn,mdnm ·Eprobe(ωf(kl)) e

−iωf(kl)t
′
= −dkl ·Eprobe(ωf(kl)) e

−iωf(kl)t
′
.

We then see the change of ρ
(2)
nm by applying the weak probe

field is

δρ(2)nm =
−i

~

∫ t

−∞
[δV̂ (t′), ρ(1)]nm e(iωnm+γnm)(t′−t)dt′ .

On the other hand, it is straightforward to get

[δV̂ (t′), ρ(1)]kl = −(ρ
(1)
kk − ρ

(1)
ll )dkl ·E(ωf(kl)) e

−iωf(kl)t
′
,

since this is analogous to the expression in Eq. (10), com-

paring with

χ(1)
nm =

N

ϵ0~
(ρ(0)mm − ρ(0)nn)

dmndnm
(ωnm − ωf(nm))− iγnm

,

following the same path we have

χ
(2)
kl =

N

ϵ0~
(ρ

(1)
ll − ρ

(1)
kk )

dlkdkl
(ωkl − ωf(kl))− iγkl

. (13)

This is the expression of weak probe field susceptibility.
Now we relate this to the spatial sinusoidal field detuning
set. We get this idea from solving the zigzag-type config-
uration problems, which we will present as an example in
the next section. We rewrite the above expression as

χ
(2)
kl = i

N

ϵ0~
(ρ

(1)
ll − ρ

(1)
kk )

dlkdkl
i(ωkl − ωf(kl)) + γkl

. (14)

The part i(ωkl−ωf(kl)) in the denominator is by definition
the term i∆d, where ∆d is the frequency detuning of the
probe field. So in a generalized way, we can say that the



306 Communications in Theoretical Physics Vol. 70

denominator can be expressed as the polynomial in the

indeterminate i∆d in the form

ΣlBl(i∆d)
l ,

knowing γkl can be looked on as γkl(i∆d)
0. On the other

hand, for the numerator, both ρ
(1)
ll and ρ

(1)
kk are real num-

bers that can be expressed in form

Σk=0A2k(i∆d)
2k ,

which is a special case of Σj=0Aj(i∆d)
j . Therefore we can

say the expression of Eq. (14) is a special case of expres-

sion

χ
(2)
kl = i

Ndlkdkl
ϵ0~

ΣN1
j=0Aj(i∆d)

j

ΣN2

l=0Bl(i∆d)l
, (15)

where N1 is the highest order of indeterminate i∆d in the

numerator’s polynomial, and N2 the highest order of i∆d

in the denominator’s polynomial. If we can prove that the

expression in Eq. (15) can have the universal pseudo-PT -

antisymmetry, then it will also work on its special case,

Eq. (14).

Equation (15) can be rewritten as

χ
(2)
kl = i

Ndlkdkl
ϵ0~

mΣm[C2m(∆d)
2m + iC2m+1(∆d)

2m+1]

ΣPD2p(∆d)2p
, (16)

where C2m, C2m+1 (m = 0, 1, 2, . . .) and D2p (p =

0, 1, 2, . . .) are real coefficients from rearranged polyno-

mials of Aj (j = 0, 1, . . . , N1) and Bl (l = 0, 1, . . . , N2).

Normally for 1D atomic lattices, N = N(z) is the periodic

Gaussian distribution function of the atom density, which

can be expressed as

N(z) = N0 e
−(z−z0i)2/σ2

, z ∈
[
z0i −

a

2
, z0i +

a

2

]
, (17)

where z0i is the i-th lattice center, a the length of the

lattice unit (also the spatial period of the 1D optical lat-

tice), N0 the density of atoms at lattice center, and σ the

standard deviation of the Gaussian distribution. We can

always choose an appropriate reference point z0 (in this

case, any z0i) to make N(z) an even function about z0.

After that, it is straightforward to see that if we set the

coupling field frequency detuning ∆d to be a sine function

of z axis, i.e.,

∆d = A sin[2π(z − z0)/a] , (18)

where A represents the real amplitude of the oscilla-

tion, then about the reference point z0 along z direc-

tion, Re[χ
(2)
kl ] is an odd function and Im[χ

(2)
kl ] is an even

function, which indicates the realization of pseudo-PT -

antisymmetry n(z) = −n∗(−z).
We have proved that under spatial sinusoidal detuning

setting, a probe field susceptibility described by Eq. (15)

will demonstrate pseudo-PT -antisymmtry. Since under

the weak probe field approximation, the probe suscepti-

bility of 1D atomic lattices of any configuration can always

be expressed by Eq. (14), a special case of Eq. (15), we

have arrived at the conclusion that the sinusoidal detun-

ing setting can induce universal pseudo-PT -antisymmtry

on 1D atomic optical lattices, regardless of energy level

configuration.

In the next section we will present an example of uni-

versal pseudo-PT -antisymmtry inducement on the zigzag-

type configuration family of 1D atomic lattices, where we

first found the idea of sinusoidal detuning setting in our

early study, and where we got our first inspiration on the

general case proof shown above.

4 Universal Pseudo-PT -Antisymmetry on
Zigzag-Type Configuration Family: An
Example

4.1 Case Study: N Configuration

(i) The Model
We first point out that the control of n is equivalent to

modulating probe susceptibility χp. Since n =
√
1 + χp ≈

1+χp/2, and from Sec. 2 we know that n = n0 + δn with
n0 being the background refractive index, also for atomic
optical lattices n0 = 1, so we have δn = χp/2.

Fig. 1 (Color online) (a) Diagram of the four-level N
configuration (4-zigzag), into which the atoms are driven
by a weak probe field Ωp and two moderate coupling field
Ωc and Ωd. (b) An ensemble of cold 87Rb atoms forming
1D optical lattice by being trapped at the bottom of pe-
riodically distributed dipole traps along z direction. The
spatial period of the dipole trap distribution (and there-
fore the spatial period of atom distribution) is a. Within
each dipole trap, we assume the atoms to be in Gaus-
sian distribution, with σ being the standard deviation,
as described by Eq. (17).

We design a system of one-dimensional optical lat-
tice, composed of Gaussian-distributed bunches of cold
87Rb atoms, with each bunch seated at the bottom of
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a dipole trap along z direction, and atoms coherently

driven into N -type configuration by three coherent laser

fields applied to the system, at frequencies (amplitudes)

ωp (Ep), ωc (Ec), and ωd (Ed), as shown in Figs. 1(a)

and 1(b). The N -configuration consists of two ground

levels |1⟩ and |2⟩ and two excited levels |3⟩ and |4⟩, and
the weak probe field ωp interacts with the dipole-allowed

transition |1⟩ ↔ |4⟩, while the two strong pump fields

ωc and ωd act upon transitions |1⟩ ↔ |3⟩ and |2⟩ ↔ |4⟩,
respectively. The corresponding frequency detunings are

defined as ∆p = ωp − ω41, ∆c = ωc − ω31, ∆d = ωd − ω42,

and the Rabi frequencies Ωp = Ep ·d14/~, Ωc = Ec ·d13/~,
and Ωd = Ed · d24/~, with ωij = ωi − ωj being resonant

transition frequencies and dij the relevant dipole moments

(i, j are labels of the energy levels).

With rotating-wave and electric-dipole approxima-

tions, the interaction Hamiltonian can be written as

ĤI = −~[(∆p −∆d)|2⟩⟨2|+∆c|3⟩⟨3|+∆p|4⟩⟨4|]
− ~[Ωc|3⟩⟨1|+Ωp|4⟩⟨1|+Ωd|4⟩⟨2|+ h.c.] .

We then get the density matrix equations:

∂tρ11 = +Γ31ρ33 + Γ41ρ44 + iΩ∗
cρ31

− iΩcρ13 + iΩ∗
pρ41 − iΩpρ14 ,

∂tρ22 = +Γ32ρ33 + Γ42ρ44 + iΩ∗
dρ42 − iΩdρ24 ,

∂tρ33 = −Γ31ρ33 − Γ32ρ33 + iΩcρ13 − iΩ∗
cρ31 ,

∂tρ12 = −γ′12ρ12 + iΩ∗
cρ32 + iΩ∗

pρ42 − iΩdρ14 ,

∂tρ13 = −γ′13ρ13 + iΩ∗
pρ43 + iΩ∗

c(ρ33 − ρ11) ,

∂tρ14 = −γ′14ρ14 + iΩ∗
cρ34 + iΩ∗

p(ρ44 − ρ11)− iΩ∗
dρ12 ,

∂tρ23 = −γ′23ρ23 + iΩ∗
dρ43 − iΩ∗

cρ21 ,

∂tρ24 = −γ′24ρ24 − iΩ∗
pρ21 + iΩ∗

d(ρ44 − ρ22) ,

∂tρ34 = −γ′34ρ34 + iΩcρ14 − iΩ∗
pρ31 − iΩ∗

dρ32 , (19)

where γ′12 = γ12+ i∆12, γ
′
13 = γ13+ i∆c, γ

′
14 = γ14+ i∆p,

γ′23 = γ23 + i∆23, γ
′
24 = γ24 + i∆d, γ

′
34 = γ34 + i∆34; and

∆12 = ∆p −∆d, ∆23 = ∆c + ∆d −∆p, ∆34 = ∆p −∆c.

We also assume Γ31 = Γ32 = Γ41 = Γ42 = γ, and γ12 ≪ γ,

therefore γ13 = γ14 = γ23 = γ24 = γ, γ34 = 2γ. Clo-

sure of this atomic system requires that ρij = ρ∗ji and

ρ11 + ρ22 + ρ33 + ρ44 = 1.

(ii) A Special Case of Pseudo-PT -Antisymmetry
on N Configuration

Fig. 2 (Color online) The pseudo-PT -antisymmetry of
χp(z) under condition of Eq. (18). (a) The real part of
probe susceptibility Re[χp] for N configuration as func-
tion of z, with x axis in unit of z/a. (b) The imaginary
part of probe susceptibility Im[χp] for N configuration
as function of z, with x axis in unit of z/a. Here we set
z0 = 0 and A = 1 MHz in ∆d = A sin[2π(z − z0)/a],
Ωc = Ωd = 5 MHz, Ωp = 0.06 MHz, and Γ31 = Γ32 =
Γ41 = Γ42 = 3 MHz. We take σ = 0.2a in Gaussian
distribution function of Eq. (17).

Using weak probe field approximation, we obtain the

first-order steady-state solutions of Eqs. (19), and since

we are interested in the probe field, we directly go for the

expression of ρ
(1)
14 . For simplicity, we set γ12 = 0 and look

at the special case

Ωc = Ωd, ∆c = ∆d, ∆p = 0 , (20)

then obtain

ρ14 = iΩ∗
p

{
Ωd(γ + i∆d)(γ − 2i∆d){−Ω∗

c i∆d[Ω
2
c − i∆d(γ − 2i∆d)] + Ω∗

dΩ
2
c(2γ − i∆d)}

2(2Ω2
d +∆2

d + γ2){[Ω2
c(2γ − i∆d)− i∆dΩ2

d][γ(Ω
2
c − i∆d(γ − 2i∆d)) + (γ − 2i∆d)Ω2

d]−∆2
dΩ

2
c(γ − 2i∆d)2}

− (γ2 +∆2
d)[Ω

2
c − i∆d(γ − 2i∆d)][Ω

2
c(2γ − i∆d)− i∆dΩ

2
d]

2(2Ω2
d +∆2

d + γ2){[Ω2
c(2γ − i∆d)− i∆dΩ2

d][γ(Ω
2
c − i∆d(γ − 2i∆d)) + (γ − 2i∆d)Ω2

d]−∆2
dΩ

2
c(γ − 2i∆d)2}

}
. (21)

Here we have uniformly replaced all the ∆c by ∆d, while

still writing down Ωc and Ωd separately. The reason of

doing this will be explained later.

We can see that under the assumption that Ωc = Ωd
are real numbers, both the numerator and the denomi-

nator of the formula can be expressed as polynomials in

indeterminate i∆d, i.e.,

ρ14 = iΩ∗
p

ΣN1
j=0Aj(i∆d)

j

ΣN2

l=0Bl(i∆d)l
, (22)

where N1 is the highest order of term i∆d in numer-

ator, and N2 the highest order of i∆d in denomina-

tor. Aj (j = 0, 1, . . . , N1) and Bl (l = 0, 1, . . . , N2) are
real coefficients determined by Eq. (21). The expres-
sion of Eq. (22) goes back to the form of Eq. (17), using
χp = N |d14|2ρ41/2ϵ0~Ωp and setting N(z) to be the peri-
odic Gaussian distribution function described by Eq. (17),
we realize pseudo-PT -antisymmetry n(z) = −n∗(−z) for
1D optical lattice on N -configuration.

In Figs. 2(a) and 2(b) we plot the real and imagi-
nary parts of probe susceptibility χp as function of z.
The parameters used here are Ωc = Ωd = 5 MHz,
Ωp = 0.06 MHz, Γ31 = Γ32 = Γ41 = Γ42 = 3 MHz. For
the frequency detuning function ∆d = A sin[2π(z−z0)/a],
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we choose z0 = 0 and set A = 1 MHz.

Fig. 3 (Color online) (a) and (b) are the real and imagi-
nary parts of χp(z) under different oscillation amplitudes
of ∆c and ∆d. The red solid line corresponds to A1/A2 =
0.3, black dashed line corresponds to A1/A2 = 1, and or-
ange dashed line corresponds to A1/A2 = 3 in Eqs. (23).
(c) and (d) are the real and imaginary parts of χp(z)
under different spatial periods of ∆c and ∆d. Red solid
line corresponds to m = 3, n = 1, gray dashed line cor-
responds to m = 5, n = 7 in Eqs. (24). (e) and (f)
are the real and imaginary parts of χp(z) under differ-
ent values of Ωc and Ωd. Red solid line corresponds to
Ωc = 3 MHz, Ωd = 6 MHz, orange dashed line corre-
sponds to Ωc = 5 MHz, Ωd = 5 MHz, black dashed line
corresponds to Ωc = 7 MHz, Ωd = 2 MHz. All the other
parameters are the same as in Fig. 2.

(iii) Pseudo-PT -Antisymmetry on N Configura-
tion under Modified Parameters

Setting ∆c=∆d in Eq. (20) ensures the expression of

ρ14 in Eq. (21) to be a function of indeterminate i∆d,

however, loosening this condition to

∆c = A1 sin[2π(z − z0)/a] ,

∆d = A2 sin[2π(z − z0)/a] , (23)

where A1 ̸= A2 are both real amplitudes, we still get

the pseudo-PT -antisymmetry, as shown in Figs. 3(a) and

3(b).

We can also modify the periods instead of amplitudes

of the sine functions by setting

∆c = A sin[2πm(z − z0)/a] ,

∆d = A sin[2πn(z − z0)/a] , (24)

where m and n are different integers, and we get the mod-

ulated periodical spatial distribution of χp, which still sat-

isfies the pseudo-PT -antisymmetry as shown in Figs. 3(c)

and 3(d).

For the condition Ωc = Ωd in Eq. (20), we change

them to different values and still get the pseudo-PT -

antisymmetry. The results are shown in Figs. 3(e) and

3(f).

4.2 Numerical Study on Different Zigzag Confi-
gurations

We now look at the different zigzag-type atom config-

urations as shown in Fig. 4, on the same setting of optical

lattice described by Fig. 1(a). In Fig. 4(a) we show the

M -type zigzag configuration, which is the original N -type

configuration spreading out one “leg” on the left-hand side

to an additional ground level state (labeled |1⟩ here). Fig-
ure 4(b) is the N -type configuration spreading out one

“leg” on the right-hand side to an additional excited level

(labeled |5⟩ here), which we call W -type configuration.

Combining these two, the N -type spreading out one “leg”

to each side gives the six-level zigzag type in Fig. 4(c).

And lastly, adding one more “leg” on the right-hand side

of six-level zigzag gives seven-level zigzag in Fig. 4(d).

For convenient comparison between different configu-

ration types, we assume that in and between each type:

(i) All the Rabi frequencies Ωci and Ωdi (i is integer)

are of equal values.

(ii) All the lower level states are treated as ground

states, and for integer i, j representing different ground

states, γij = 0.

(iii) Γij (i, j are different integers) only exists between

adjacent excited and ground states that are coupled by

external fields.

Notice that if we also include the N -type into the cur-

rent group for comparison, we should set Γ32 = 0, which

is different from the N -type setting previously used in this

section.
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Fig. 4 (Color online) (a) M -type zigzag configuration, which is N -type configuration spreading out one “leg” on
the left-hand side to the newly added ground state labeled |1⟩. (b) W -type zigzag configuration, which is N -type
configuration spreading out one “leg” on the right-hand side to the newly added excited state labeled |5⟩. (c) Six-level
zigzag configuration, which is N -type configuration spreading out one “leg” on the left-hand side to the newly added
ground state labeled |1⟩, and one “leg” on the right-hand side to the newly added excited state labeled |6⟩. (d) Seven-level
zigzag configuration, which is six-level zigzag configuration spreading out one “leg” on the right-hand side to the newly
added ground state labeled |4⟩.

Fig. 5 (Color online) The pseudo-PT -antisymmetry of
χp(z) on N -type (red solid line), M -type (green dashed
line), W -type (blue dotted line), six-level zigzag (black
dotted line) and seven-level zigzag (orange dashed line)
atom configurations. (a) The real part of probe suscepti-
bility Re[χp] for different atom configurations as function
of z, with x axis in unit of z/a. (b) The imaginary part
of probe susceptibility Im[χp] for different atom config-
urations as function of z, with x axis in unit of z/a.
The parameters used here are Ωci = Ωdi = 5 MHz,
Ωp = 0.06 MHz, Γij = 3 MHz (when being nonzero
term), ∆ci = ∆di = A sin[2π(z − z0)/a] with z0 = 0
and A = 1 MHz. The atom density distribution function
is the periodic Gaussian function given by Eq. (17) and
σ = 0.2a.

Following these setting, in drawing the plot of Fig. 5,

we set Ωci = Ωdi = 5 MHz, Ωp = 0.06 MHz, Γij = 3 MHz

whenever it is nonzero, and for the key role of coupling

field detunings, we set

∆ci = ∆di = ∆ = A sin[2π(z − z0)/a] , (25)

and choose z0 = 0 and A = 1 MHz. The periodic Gaussian

distribution function of atom density on the optical lat-

tice is still given by Eq. (17). The uniform inducement of

pseudo-PT -antisymmetry on different zigzag-type atomic

optical lattices are shown in Fig. 5.

From Fig. 5 we see that the N -type configuration has

the largest amplitude in both real and imaginary parts of

probe susceptibility χp. TheM -type andW -type are both

N -type spreading out one “leg”, one to an extra ground

state, one to an excited state. Compared to N -type, the

W -type has both the real and imaginary parts of χp sup-

pressed to a moderate level, while for the M -type, the

real part of χp is also suppressed largely but less than the

W -type, however the imaginary part is suppressed almost

to zero. The six-level zigzag configuration is the W -type

spreading out one “leg” to an extra ground state, and the

seven-level zigzag configuration is the six-level configura-

tion spreading out one more “leg” to a ground state on the

other side. Compared to the W -type, the real part of χp
of six-level configuration is strongly suppressed, but that

of seven-level is strongly enlarged. On the contrary, the

imaginary part of χp of six-level configuration is strongly

enlarged, and that of seven-level is strongly suppressed.

We leave the detailed and systematic study of the corre-

lation between the atom configuration and probe suscep-

tibility to the future work.

5 Conclusions

In this paper, we show the result that under the set-

ting of sinusoidal spatial distribution of coupling field

detunings, the pseudo-PT -antisymmetry, i.e. δn(z) =

−δn∗(−z), the complex refractive index antisymmetry

along propagation direction of 1D atomic lattices, can be
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universally induced on the 1D atomic lattices of any con-
figuration.

We find that the reason for the uniform inducement
of pseudo-PT -antisymmetry is rooted in the quantum-
mechanical nature of atom-field interaction, which can be
derived directly from the general form of master equation
under weak probe field approximation.

For future interest of the universal pseudo-PT -
antisymmetry, we also point out that when being cast
back to quantum-mechanical side, δn(z) = −δn∗(−z) cor-
responds to V (x, t) = −V ∗(x,−t), the conjugate time-
reversal antisymmetry of complex potential V (x, t) in 1D

Schrödinger equation.

In conclusion, the universal inducement of pseudo-PT -

antisymmetry is a novel observation. It expands our un-
derstanding of the origin of optical response of atomic lat-

tices, provides more reliable and variable method in de-

signing atomic optical lattices, and offers more flexibility
and stability to the optical features of atomic lattices.
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