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Abstract Spontaneous symmetry breaking is related to the appearance of emergent phenomena, while a non-vanishing
order parameter has been viewed as the sign of turning into such symmetry-breaking phase. We study the spontaneous
symmetry breaking in the conventional superconductor and Bose–Einstein condensation with a continuous measure of
symmetry by showing that both the many-body systems can be mapped into the many spin model. We also formulate
the underlying relation between the spontaneous symmetry breaking and the order parameter quantitatively. The degree
of symmetry stays unity in the absence of the two emergent phenomena, while decreases exponentially at the appearance
of the order parameter which indicates the inextricable relation between the spontaneous symmetry and the order
parameter.
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1 Introduction

Symmetry and its breaking are evidently of signifi-

cance in physics. Many physical laws originate from sym-

metry. For every continuous symmetry, it follows from

the Noether’s theorem[1] that a corresponding conserved

law exists; the Kibble-Zurek mechanism,[2−3] on the other

hand, allows the dynamical quench through condensed

matter phase transitions to be used as a mean to sim-

ulate the formation of cosmological defects.[4−5] Actually,

symmetry has also been studied in many other subjects

such as mathematics,[6] biology,[7] and chemistry.[8]

Spontaneous symmetry breaking (SSB) is a fashion

of symmetry breaking of a quantum system S that the

Hamiltonian or the motion equation of S possesses some

symmetry while its ground state does not.[9] The impor-

tance of SSB is fundamental, as well as practical. For

example, the Higgs mechanism explains the generation

of mass for the gauge bosons in the unified theory for

the weak and electromagnetic interactions,[10−11] and ow-

ing to the spontaneous chiral symmetry breaking in living

organism,[7] synthetic cells with opposite handedness have

been considered as an appealing therapeutic tool.[12] It has

been known that the emergent phenomena, e.g., supercon-

ductivity and Bose–Einstein condensation (BEC)[13−14]

are all rooted in SSB. The traditional approach to the

SSB based emergent phenomena is the mean field the-

ory (MFT), which is capable of qualitatively explaining

phenomena in diverse areas. A more strict method be-

yond MFT was developed by Yang,[15] based on the con-

sideration of off-diagonal long-range order (ODLRO). In

ODLRO approach, a non-vanishing order parameter arises

with the emergence of SSB.

The fast developments of quantum information the-

ory not only provide the possibility to improve the perfor-

mances of certain quantum tasks, e.g., quantum teleporta-

tion and quantum cryptography, but also support a new

viewpoint towards a further understanding of quantum

physics. Although concepts like entanglement and coher-

ence are originally introduced in a dichotomous fashion

similar in spirit to the symmetry breaking, the practi-

cal need of minimizing the resource costs in various in-

formation protocols motivates the introduction of quanti-

tative measures.[16−18] And those measures have in turn

been successfully applied to the studies of entanglement

dynamics,[19−21] classical and quantum correlations,[22]

as well as behaviors of systems near quantum critical

points.[23−27]

Analogous to quantitative frameworks of quantum en-

tanglement and coherence, the communication tasks such

as sharing a reference frame[28−30] and remote clocks

synchronization[31−33] have stimulated the theoretical ex-

plorations of possible quantifications of the asymmetric

properties of quantum states which could provide novel
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solutions. In consequence, various measures were thus

introduced.[34−37] As it is well known that the order pa-

rameter usually characterises SSB, it does make sense

physically that if their definitions were reasonable, the

order parameter should possess an underlying connection

with those asymmetry measures. However, to our best

knowledge, investigations along this line remain elusive.

The present paper is aimed at establishing such a quan-

titative relation between the order parameters and a sym-

metry measure called degree of symmetry (DoS). We con-

sider two representative phenomena that have been well

explored following the traditional approach, namely the

superconductivity with isotropic pairing and the Bose–

Einstein condensation (BEC) in the many-spin model. It

will be shown that the DoS for those two types of SSB phe-

nomena could be expressed in terms of the corresponding

order parameters in the thermodynamic limit. This result

also represents an important step to justify the potential

of applying this DoS-based approach to detect unknown

symmetry-breaking-related effects in systems whose order

parameters are unknown in advance.

This paper is organized as follows: In Sec. 2, it is il-

lustrated that why DoS is suitable for investigating SSB

when compared with some other existing asymmetry mea-

sures, and a summarize to our main results is also given.

In Sec. 3, the mapping from the BCS and BEC systems

to the many-spin model is illustrated. In Sec. 4, the DoS

for the many-spin model is explicitly evaluated and its re-

lation with SSB is discussed. Then the DoS for the BCS

and the BEC systems are separately explored in Secs. 5

and 6, respectively. Finally, we draw the conclusion in

Sec. 7.

2 Symmetry and Asymmetry Measures

The symmetry property of states has been studied by

several groups with different physical considerations. For

example, an asymmetry measure of a quantum state ρ is

defined as the entropy difference.[34−35]

AG(ρ) = S(R(g)ρR(g)†)− S(ρ) , (1)

where S(ρ) ≡ −Tr(ρ log2 ρ) is the von Neumann entropy,

R(g) is the matrix representation of element g in group

G and f(g) = n−1
G

∑
g∈G f(g) is the average performed

over group G with order nG. This measure represents

the difference between the extractable work using states

ρ and R(g)ρR(g)† and also quantifies the ability of ρ to

act as a reference system. Apparently, AG(ρ) = 0 if

R(g)ρR(g)† = ρ, which means ρ is symmetric under G.

Another quantifier is proposed by Marvian et al.,[36−37]

which is called the characteristic function of a pure state

χψ(g) = ⟨ψ|R(g)|ψ⟩ . (2)

It has been proved that two pure states ψ and φ who sat-

isfy χψ(g) = χφ(g) for arbitrary g ∈ G can be converted

into each other by G-convariant unitary dynamics.

Although those measures could provide reasonable

quantifications of asymmetry property of quantum states,

there exist two limitations in connecting straightforwardly

to symmetry breaking related phenomena in the tradi-

tional fashion: (i) Some of those measures are not nor-

malized, e.g., Eq. (1); (ii) Owing to the particular appli-

cations, those asymmetry measures are introduced with

respect to quantum states. As a result, they might not

be appropriately used to describe spontaneous symme-

try breaking, where a comparison between the symmetry

properties of Hamiltonian and the underlying ground state

is needed.[38−39]

To go beyond these limitations, a continuous measure

of symmetry breaking has been proposed by introducing

the degree of symmetry (DoS)[40] and then it was applied

to the Frobenius-norm-based measures for quantum co-

herence and asymmetry.[41] Specifically, for a given trans-

formation set G, the DoS of the Hamiltonian H and the

density matrix ρ of a quantum state are defined, respec-

tively, as follows

S(G,H) =
1

4|H̃|2
|{R(g), H̃}|2 , (3)

S(G, ρ) =
1

4|ρ|2
|{R(g), ρ}|2 , (4)

where G is a given transformation set, g ∈ G, R(g) is its

d-dimensional representation, |A| =
√
TrA†A. Especially,

H̃ = H −Tr{H}Id×d/d is a re-biased Hamiltonian, which

possesses a similar energy spectrum as that of H but is

free of the choice of the energy zero point. It is worth

mentioning that |ρ|2 = Tr(ρ2) denotes the purity of ρ.

The definition of the DoS satisfies three nice properties

which are physically reasonable: (i) Tighter bound when

G forms a transformation group 1/2 ≤ S(G,H) ≤ 1; (ii)

Independent of the basis in the system’s Hilbert space;

(iii) Independent of the choice of the ground state energy;

(iv) Scaling invariance.[40]

Apparently, DoS with properties of normalization and

compatibility with Hamiltonian and quantum states can

be applied to the study of some emergent phenomena, e.g.,

spontaneously symmetry breaking. Apart from this, one

may find that there are some similarities between DoS and

other measures mentioned above. First, the average per-

formed over group is introduced by both DoS Eq. (4) and

the entropy asymmetry measure Eq. (1). Second, S(G, ρ)

reduces to 1/2 + χψ(g)χ∗
ψ(g)/2 when ρ = |ψ⟩⟨ψ|.

In order to calculate the DoS for the conventional su-

perconductor and BEC in a unified fashion, we map them

to the many-spin model with Hamiltonian

H =

N∑
i=1

ϵσiz + λσix + µσiy , (5)

where ϵ, λ and µ are real and σin (n = x, y, z) denotes the

Pauli operator of the i-th particle. We will show that both
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the Bardeen–Cooper–Schrieffer (BCS) and BEC Hamilto-

nians can be mapped into Eq. (5). Then, the DoS of the

BCS and BEC systems is given through the study of the

many-spin model.

S(G, ρT=0)S =
1

2
+

1

2
exp(−(2−

√
2)πg(0)|∆(0)|) ,

S(G, ρT=0)B =
1

2
+

1

2
exp(−2⟨a⟩20) , (6)

where the subindices S stands for superconductivity and

B for BEC, g(ϵ) is the density of states, and ∆(0) together

with ⟨a⟩0 are the corresponding order parameters at the

absolute zero temperature. It follows from Eq. (6) that

the DoS reaches 1 (the symmetry is unbroken) and the

symmetry is totally recovered as ∆(0) or ⟨a⟩0 vanishes.

3 Many-Spin Model for the Conventional
Superconductor and BEC

In the conventional superconductivity theory,[14] the

BCS Hamiltonian is obtained by eliminating the phonon

variable.

HS =
∑
k

ϵk(a
†
kak + b†kbk)− V

∑
k,k′

a†kb
†
kbk′ak′ , (7)

where ak(bk) denotes the annihilation operator of an elec-

tron with momentum k(−k) and spin up (down). In ac-

cordance with the BCS assumption,[14,42] the net electron-

phonon attractive interaction V is non-zero only for sin-

gle electron states whose energy satisfy |εk − εF | ≤ ~ωD,

with ωD the Debye frequency and εF the chemical poten-

tial in the normal phase. Thus the summation over k in

Eq. (7) is correspondingly restricted to a thin shell around

the sphere whose radius is given by the Fermi wavevector

kF . Two electrons with opposite momentum and spin

create an electron pair which is called the Cooper pair.[42]

The Jordan–Wigner transformation[43] exactly maps the

fermion model into the pseudo-spin model as

σk+ = bkak , σk− = a†kb
†
k ,

σkz = 1− (a†kak + b†kbk) . (8)

It is easily checked that these pseudo-spin operators

defined above satisfy the commutation relations of spin

type

[σk+, σ
k′

− ] = σkz δk,k′ , [σkz , σ
k′

± ] = ±2σk±δk,k′ . (9)

Then, the BCS Hamiltonian given in Eq. (7) is re-

expressed as

HS = −
(∑

k

ϵkσ
k
z + V

∑
k,k′

σk−σ
k′

+

)
+
∑
k

ϵk , (10)

where for a given system
∑
k ϵk is determinate and can be

dropped. We then obtain the BCS Hamiltonian described

in the spin model

HS = −
(∑

k

ϵkσ
k
z + V

∑
k,k′

σk−σ
k′

+

)
. (11)

In the BCS theory, one deal with the eigenenergy prob-

lem with the mean field approximation (MFA), which as-

sumes that the difference between σk−(σ
k′

+ ) and its expect

value is a small quantity. That is to say, σk− = ⟨σk−⟩ + λ

and σk+ = ⟨σk+⟩ + τ where λ and τ are small quantities.

Then, we make another assumption that the summation

of the averages of σk+ is non-zero,

∆ = V
∑
k

⟨σk+⟩ , (12)

where ∆ is the energy gap of BCS. ∆ serves as the or-

der parameter for the superconducting transition. ∆ is

zero when T is above the critical temperature Tc, indi-

cating that the effective interaction is no more attractive.

As a result, the Cooper pairs around the Fermi surface

are seperated. When the temperature is below Tc, ∆ be-

comes non-zero, which implies that the number of elec-

trons is not conserved in HS and the gauge symmetry

ak(bk) → ak(bk) exp[iφ/2] is spontaneously broken. Then,

the BCS Hamiltonian reads

HS = −
∑
k

(ϵkσ
k
z +Re(∆)σkx + Im(∆)σky ) . (13)

Obviously, the BCS Hamiltonian HS possesses the same

form as the general many-spin model Hamiltonian, which

we present in Eq. (5).

For the boson system, the condensation happens if a

finite fraction of the particles occupies the lowest single-

particle state under the thermodynamic limit.[14] Math-

ematically, this is expressed by the appearance of the

ODLRO,[15] i.e.,

ρ(x, y) = ⟨ψ̂†(x)ψ̂(y)⟩ |x−y|→∞−−−−−−→⟨ψ̂†(x)⟩⟨ψ̂(y)⟩ ̸= 0 , (14)

where ρ(x, y) is the single particle reduced density matrix,

ψ̂(x) is the bosonic field operator, and the average is per-

formed under the ground state of the many-body system.

⟨ψ̂(x)⟩ is the order parameter of BEC and BEC occurs

when ⟨ψ̂(x)⟩ is non-zero. Actually, the apperance of BEC

breaks the U(1) symmetry which corresponds to the con-

servation of particle number. Therefore, the Hamiltonian

for BEC is over-simplified as

H ∼ a†a+ α(a+ a†) . (15)

The representation of a group element of U(1) is R(θ) =

exp(iθa†a). It could be proved that [R(θ),H] = 0 if and

only if α = 0. Actually, the ground state ofH is a coherent

state |α⟩ when α is nonzero. According to the Penrose–

Onsager criterion,[14] ⟨α|a|α⟩ = α is the non-vanishing

order parameter.

In order to analyze the DoS of BEC with a general

many-spin model, we introduce the many-spin model with

the Hamiltonian HB

HB =
N∑
i=1

ϵσiz + λσix . (16)
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By using

Jk =

N∑
i=1

1

2
σik(k = x, y, z) , J± = Jx ± iJy ,

as the collective angular momentum operators, the above

Hamiltonian becomes

HB = 2ϵJz + λ(J+ + J−) . (17)

As [J2,HB ] = 0, the total angular momentum conserves.

In the limit of the low excitation, we obtain

J2 =
N

2

(N
2

+ 1
)
= J2

z + J+J− − Jz ,

Jz =
1

2
± N

2

√
(1 + η)2 − 4J+J− ,

where η = 1/N . Now we map the angular momentum

operators to boson operators in the large N limit, i.e.,

a = J−/
√
N , a† = J+/

√
N . Actually, the commutation

relation between a and a† is

[a, a†] = −η
(
1− 1

η

√
(1 + η)2 − 4ηa†a

)
, (18)

where we have taken

Jz =
1

2
− N

2

√
(1 + η)2 − 4ηa†a .

When N → ∞ and η → 0, by taking Eq. (18) to the first

order, we obtain [a, a†] ≃ 1 − 2ηa†a ≃ 1. It is clear that

a(a†) can be treated as the annihilation (creation) opera-

tor of bosons in the limit of low excitation and large N .

The Hamiltonian HB can be expressed as

HB ≃ 2ϵa†a+ λ
√
N(a+ a†) , (19)

which is just the simplified BEC Hamiltonian we consider

in Eq. (15). Since we have mapped the many-spin model

to the boson model, we make use of Eq. (16) to simulate

SSB in BEC in the limit of low excitation and large N .

In conclusion, we have just showed above that the

many-spin model is valid both in fermion and boson sys-

tems.

4 The DoS of Many-Spin System

According to the definition of the DoS given in Eqs. (3)

and (4), we calculate the DoS of the many-spin system

as follows. The density matrix reads ρ = exp(−βH)/Z,

where Z is the partition function Tr(exp(−βH)). Partic-

ularly, near the absolute zero temperature, i.e., β → ∞,

the system stays in its ground state. Actually, the linear

superposition of σx, σy and σz appeared in Eq. (5) can be

treated as σz rotated about some certain axis. Thus, the

Hamiltonian appeared in Eq. (5) can be simplified to

H =

N∑
i=1

ξRi(θ, ϕ)σ
i
zR

†
i (θ, ϕ) , (20)

where

ξ =
√
ϵ2 + λ2 + µ2 , cos θ =

ϵ

ξ
, tanϕ =

µ

λ
,

Ri(θ, ϕ) = e−iϕσi
z/2 e−iθσi

y/2 .

Then, the ground state of this Hamiltonian is obtained

immediately as |G⟩ =
∏
iRi(θ, ϕ)| ↓⟩i, where | ↓⟩ denotes

the state of spin down. Here, we regard λ and µ as the

perturbations and σiz remains unchanged under rotations

about the z-axis by an arbitrary angle. All of these sym-

metric transformations form a group called SO(2).

In the many-spin system here, the symmetric group is

SO(2)⊗N , with the elements R(g) =
∏
i exp(−iωiσ

i
z/2).

The DoS of Hamiltonion is given by

S(SO(2)⊗N ,H) =
1

2
+

ϵ2

2ξ2
, (21)

where the group average here is

1

(2π)N

∫ π

−π
dωi · · ·

∫ π

−π
dωN ,

which means that N particles are rotated separately.

On the other hand, the DoS of the ground state is

obtained as

S(SO(2)⊗N , ρT=0) =
1

2
+

1

2

(
1− λ2 + µ2

2ξ2

)N
. (22)

This gives the DoS of the thermal equilibrium state as

S(SO(2)⊗N , ρT ) =
1

2
+

1

2
(1− Λ)N , (23)

where Λ = [(λ2 + µ2) sinh2(βξ)]/[ξ2 cosh(2βξ)].

All Eqs. (21), (22), and (23) decrease as the perturba-

tions λ and µ grow. It means that the symmetry is broken

by the perturbations. Especially,

lim
λ,µ→0

lim
N→∞

S(SO(2)⊗N ,H) = 1 ,

lim
N→∞

lim
λ,µ→0

S(SO(2)⊗N ,H) = 1 , (24)

while at sufficiently low temperature,

lim
N→∞

lim
λ,µ→0

S(SO(2)⊗N , ρT ) = 1 ,

lim
λ,µ→0

lim
N→∞

S(SO(2)⊗N , ρT ) =
1

2
. (25)

The non-commutativity of the limits N → ∞ and λ,

µ→ 0 in Eq. (25) indicates the emergence of SSB.[39]

5 Quantifying SSB in Fermion System

The Hamiltonian of the conventional superconductor

in BCS theory is re-expressed as that of the many-spin

model

HS = −
∑
k

ξkR(θk, ϕ)σ
k
zR

†(θk, ϕ) , (26)

where

ξk =
√
ϵ2k + |∆|2 , tanϕ =

Im(∆)

Re(∆)
,

tan θk =
|∆|
ϵk

, R(θk, ϕ) = e−iϕσk
z/2 e−iθkσ

k
y/2 .

The ground state of this superconductor is |G⟩S =∏
k R(θk, ϕ)| ↑⟩k. The quasiparticle excitation energy
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ξk =
√
ϵ2k + |∆|2 ≥ |∆|. To excite a quasiparticle around

the Fermi surface, one needs at least an energy scale of

|∆|, which ensures the stability of the superconductor. As

a consequence, |∆| describes the energy gap in BCS.

Straightforward calculation shows that the DoS of the

Hamiltonian and the ground state of the conventional su-

perconductor are given as

S(SO(2)⊗N ,HS) =
1

2
+

1

2

∑
k ϵ

2
k∑

k ξ
2
k

, (27)

S(SO(2)⊗N , |G⟩S) =
1

2
+

1

2

∏
k

(
1− 1

2

|∆(0)|2

ϵ2k + |∆(0)|2
)

≃ 1

2
+

1

2
e−κ|∆(0)| , (28)

where κ = (2−
√
2)πg(0) and g(ϵ) is the density of states.

For more details, see Appendix A. Like Eq. (22) in the

many-spin model, the DoS of the ground state in fermion

system also possesses the non-commutativity of two limits.

This is one of the main results of this paper which reflect

a direct correspondence between the DoS and the order

parameter. The DoS of the conventional superconductor

is less than unity as long as there exists a non-vanishing

energy gap ∆(0). It agrees with the fact that SSB occurs

when ∆(0) is non-zero. The energy gap at the absolute

zero temperature is defined as

∆(0) = V
∑
k

⟨G|σk+|G⟩S =
V

2

∑
k

∆(0)√
ϵ2k + |∆(0)|2

. (29)

At a finite temperature T , the density matrix of the

system reads ρT
S = exp(−βHS)/Z, with the partition func-

tion Z = 4N
∏
k cosh

2(βξk/2). The corresponding DoS of

ρT
S is

S(SO(2)⊗N , ρT

S ) =
1

2
+

1

2

∏
k

G(ϵ,∆(T )) , (30)

where G(ϵ,∆(T )) = 1− |∆(T )|2 tanh2(βξk)/2ξ2k. Further

simplification shows

S(SO(2)⊗N , ρT

S ) ≃
1

2
+

1

2
e2g(0)|∆(T )|K(T ) , (31)

where

K(T ) =

∫ ∞

0

ln
[
1 +

1

1 + t2

(
− 1

2
+

1

k(T, t) + 1

)]
dt ,

k(T, t) = cosh(2β|∆(T )|
√
1 + t2) ,

and in the above calculation we have assumed ~ωD ≫
|∆(T )| for simplicity. It follows from Eq. (31) that

K(T ) = ln(2S−1)/(2g(0)|∆(T )|). Hence in fact, K(T ) ∝
ln(2S − 1)/|∆(T )|.

As analyzed above, the DoS of ρT
S at temperature T in

the conventional superconductor increases monotonically

as the energy gap |∆(T )| decreases. Figure 1(a) shows

∆(T ) in unit of ∆(0) as a function of T/Tc. The energy

gap ∆(T ) decreases as T increases and stays zero when

T > Tc, which means that the system returns to its nor-

mal phase. The temperature dependence of the DoS is

shown in Fig. 1(b). As can be seen from the figure, the

DoS grows as the temperature increases in the region of

0 ≤ T ≤ Tc, and reaches its maximum value at the critical

temperature Tc. Then, the increasement of the temper-

ature above Tc does not modify the DoS. In comparison

with the temperature-dependent behavior shown by the

energy gap, it follows that the monotonic increasing of

the DoS serves as a quantification for the restoring of the

broken symmetry that is traditionally depicted by the de-

crease of ∆(T ).

Fig. 1 (Color online) (a) Energy gap ∆ vs. tempera-
ture T for the conventional superconductor. The energy
gap is normalized as ∆(T )/∆(Tc) while T is measured in
the unit of the critical temperature Tc. (b) The degree
of symmetry of ρT

S with respect to the SO(2) transfor-
mation group. The blue solid and red dashed curves are
corresponding to g(0)kBTc = 0.4 and 0.5, respectively.

6 Quantifying SSB in Boson System

The boson system can be mapped into the many-spin

model with the Hamiltonian

HB = ξB

N∑
i=1

e−i(θ/2)σi
yσiz e

i(θ/2)σi
y , (32)

where

ξB =
√
ϵ2 + λ2 , sin θ = λ/ξB .

In the limit of largeN and low excitation, the ground state

|G⟩B =
∏N
i=1 e−i(θ/2)σi

y | ↓⟩i is approximately equivalent

to a coherent state, i.e., |G⟩B ≃ |α⟩, where α = −
√
Nθ/2.

It sounds meaningful in physics that the ground state of

BEC is also a coherent state as shown in Eq. (15).



410 Communications in Theoretical Physics Vol. 68

Similar to the case of the BCS theory, we can obtain

S(SO(2)⊗N , HB) = 1− λ2

2(ϵ2 + λ2)
. (33)

As Tr((ρT=0
B )2) = 1, the DoS of the ground state reads

S(SO(2)⊗N , |G⟩B) =
1

2
+

1

2

(
1− λ2

2ξ2B

)N
. (34)

The order parameter at T = 0 can be calculated as

⟨a⟩0 =
1√
N
B⟨G|

∑
i

σi−|G⟩B = −
√
N

2
sin θ . (35)

Furthermore, the DoS of the ground state can be re-

expressed in term of the order parameter,

S(SO(2)⊗N , |G⟩B) =
1

2
+

1

2

(
1− 2⟨a⟩20

N

)N
. (36)

As limx→∞(1 + 1/x)x = e, Eq. (36) is simplified in the

limit of large N as

lim
N/2⟨a⟩20→∞

S(SO(2)⊗N , |G⟩B) =
1

2
+

1

2
e−2⟨a⟩20 . (37)

This is the second main result of this paper. Just as

the case for the conventional superconductor, the maxi-

mum of DoS is directly associated with the vanishing of

the order parameter ⟨a⟩0. Thus the DoS of the ground

state which is less than unity can also indicate the SSB

in the boson system. The same results also hold for the

system at finite temperature, since by evaluating Eq. (4)

with ρT
B we found

S(SO(2)⊗N , ρT

B) =
1

2
+

Tr(R(ω)ρR†(ω)ρ)SO(2)⊗N

2Tr(ρ2)
. (38)

The DoS of ρT
B of BEC is given as

S(SO(2)⊗N , ρT

B) =
1

2
+
1

2

(
1− λ2

2ξ2B

cosh(2βξB)− 1

cosh(2βξB)

)N
.(39)

Using the approach similar to the above, we rewrite

Eq. (39) in terms of the order parameter in a finite tem-

perature ⟨a⟩T = Tr(ρT
Ba) = −λ

√
N tanh(βξB)/(2ξB).

S(SO(2)⊗N , ρT

B)=
1

2
+
1

2

[
1−2⟨a⟩2T

N

1 +cosh(2βξB)

cosh(2βξB)

]N
.(40)

Similar to the absolute zero temperature case, the DoS

of ρT
B in boson system depends on both the order param-

eter ⟨a⟩T and the temperature T . Just like the Penrose–

Onsager criterion,[14] the BEC occurs if and only if ⟨a⟩T is

nonzero. When there exists BEC, a large fraction of par-

ticles (to the order of N) occupy the ground state with

zero momentum. When T > Tc, where Tc is the criti-

cal temperature of BEC, no condensation occurs. Thus

⟨a⟩T>Tc = 0, and the symmetry of the boson system is

unbroken.

7 Conclusion

In this paper, we have exploited a measure of symme-

try — the degree of symmetry (DoS) to describe the SSB

in the conventional superconductor and BEC. We have

established rigorous relations between the DoS and the

order parameters at the absolute zero temperature and fi-

nite temperature. It has been demonstrated that for both

the fermion and the boson systems, (i) At T = 0, the

order parameter takes its maximum and the symmetry

of the system is maximally broken; (ii) At 0 < T < Tc,

the order parameter is still non-vanishing and the extent

of the SSB can be quantified by the DoS; (iii) When T

grows beyond Tc, the order parameter vanishes and the

symmetry of the system is fully restored.

In fact, the DoS approach that we applied in this pa-

per can be generalized to other circumstances. We can

explore symmetry breaking in other quantum many-body

systems employing the DoS quantifier and expect to ob-

tain new order parameters when SSB appears. What is

worth mentioning is that the new order parameter must

be measurable and reasonable in physics.

Appendix A: The DoS of the Ground State
in the Fermion System

As shown in Eq. (28), the DoS of the ground state in

the fermion system is

S(SO(2)⊗N , |G⟩S) =
1

2
+

1

2

∏
k

(
1− 1

2
sin2 θk

)
=

1

2
+

1

2
exp

[∑
k

ln
(
1− 1

2
sin2 θk

)]
=

1

2
+

1

2
exp

[ ∫ ~ωD

−~ωD

g(ϵ) ln
(
1− 1

2
sin2 θk

)
dϵ

]
=

1

2
+

1

2
exp[|∆(0)|G(ωD, |∆(0)|)] , (A1)

where

G(ωD, |∆(0)|) =
∫ ~ωD/|∆(0)|

−~ωD/|∆(0)|
g(t|∆(0)|) ln

(
1− 1

2

1

t2 + 12

)
dt ,

and ωD is the Debye frequency. As in general case ~ωD/|∆(0)| ≫ 1 and g(ϵ) changes slowly in the range of (−~ωD, ~ωD),

we can take the integral limits to ±∞ and replace g(t|∆(0)|) with g(0). Therefore, we obtain

G(ωD, |∆(0)|) =
∫ ~ωD/|∆(0)|

−~ωD/|∆(0)|
g(t|∆(0)|) ln

(
1− 1

2

1

t2 + 12

)
dt

≃ g(0)

∫ ∞

−∞
ln

(
1− 1

2

1

t2 + 12

)
dt = −(2−

√
2)πg(0) . (A2)
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In this sense, the DoS of the ground state in the fermion system is simplified as

S(SO(2)⊗N , |G⟩S) =
1

2
+

1

2
exp[|∆(0)|G(ωD, |∆(0)|)] ≃ 1

2
+

1

2
exp[−(2−

√
2)πg(0)|∆(0)|] . (A3)
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