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Quasi-one Dimensional Topological Insulator: Möbius Molecular Devices in Peierls

Transition∗
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Abstract We show that, assisted by the Peierls transition of lattice, as a quasi-one dimensional (Q1D) tight binding
system, a Möbius molecular device can behave as a simple topological insulator. With the Peierls phase transition to
form a domain wall, the solitonary zero modes exist as the ground state of this electron-phonon hybrid system, which
is protected by the Z2 topology of the Möbius strip. The robustness of the ground state prevents these degenerate zero
modes from their energy spectrum splitting caused by any perturbation.
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1 Introduction

Topological insulator (TI), as an exotic bulk insulator
with robust metallic surfaces described by zero modes,
has been extensively studied.[1−15] Many candidates of TI
are of more than one dimension, such as two-dimensional
HgCdTe quantum wells with helical zero modes[16−18]

or the quasi-one dimensional graphene ribbon.[19−20] It
seems impossible to find one-dimensional TI, since a one-
dimensional system only possesses either R1 or S1 geom-
etry respectively with the open boundary condition or pe-
riodic boundary one. However, with some lattice deforma-
tions, many-electron systems in one dimension can display
spooky natures, to which the Peierls instability induced by
electron-phonon interaction takes responsibility.[21−22]

In this letter, we are challenged to discovery a quasi-
one dimensional (Q1D) TI, where the soliton due to Peierls
transition emerges as a zero mode. In generic system
with this transition, e.g., the usual polyacetylene chain by
the Su–Schrieffer–Heeger (SSH) model,[23] however, the
zero mode is not a ground state, thus not robust. Our
present task is to force the solitonary zero mode to be-
come a ground state by invoking a non-trivial topology
of configuration spaces. This kind of systems can be im-
plemented as experimentally accessible Möbius molecular
devices,[24−30] and described as tight binding electronic
models on the Möbius ladder lattice (see Fig. 1(a)). Ac-
tually, it has been shown that there exist observable topo-
logical effects, such as the topological cutoff of the trans-
mission spectrum[31] through a non-abelian induced gauge
field. The existence of the zero modes in such systems is

the consequence of both the electron-phonon interaction
and the Möbius boundary condition. It should be indi-
cated that such zero modes actually are protected by the
Z2 topology of the Möbius strip in the real space, while the
widely studied topological properties in solid state physics
emerge in the momentum space.

Fig. 1 (Color online) Schematic illustrations of (a)
undimerized ladder with Möbius boundary condition, (b)
dimerized ladder with Möbius boundary condition and
(c) the corresponding one-dimensional version of Möbius
ladder system with long range coupling.

2 Peierls Transition of Möbius Molecular
Devices
The topological molecular device we consider consists

of electrons hopping on a Möbius ladder (see Fig. 1(a)),
which is a non-orientable manifold, whose edge defines a
two-point bundle over S1 and thus Z2 topological struc-
ture. Figure 1(b) shows one of its possible lattice defor-
mations.
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The corresponding Hamiltonian reads

He =
N−1∑
j=0

A†
jM jAj −

N−1∑
j=0

J jA
†
jAj+1 + h.c. , (1)

where operator-value vector Aj = (aj , bj)
T is defined in

terms of the annihilation operator aj and bj pictured as

Fig. 1(c). Here, the Möbius ladder can be regarded as

a Q1D system, consisting of a-chain and b-chain with

long range hopping with strength Gj ≡ G0, for j =

0, 1, . . . , N − 1. Here, N is the site number of a-chain (b-

chain). The transition matrices M j = εjσz − Gjσx and

J j = JjI are defined by Pauli matrices σx, σy and σz,

unity matrix I, on-site energy difference εj ≡ ε0 and hop-

ping strength Jj ≡ J0. Particularly, the boundary condi-

tion AN = σxA0 is taken to reflect the Möbius twist. The

pure electron system is diagonalized to show two bands

(Fig. 2(a)).

Fig. 2 (Color online) Schematic spectra of ladders without dimerization (a) and with staggered dimerization
(b). The shadow regions represent the electron occupation in the energy bands.

Peierls transition induced by electron-phonon inter-

actions in such a Q1D system, we use the Born–

Oppenheimer approximation by presuming the transverse

and longitudinal lattice deformations (see Fig. 3) depicted

by two displacements uj and vj . Here, the lattice deforma-

tion is modeled as 2N coupled harmonic oscillators with

Hamiltonian Hp({uj , vj}).
There exist five dimerization patterns illustrated in

Fig. 3, including three simple dimerizations and two hy-

brid dimerizations. Let m and l be the lattice constants

along the transverse and longitudinal directions, respec-

tively, and we can define the static uniform deformations

uj = (−1)jδ and vj = (−1)jσ. They characterize the

rung dimerization (Fig. 3(b)), the columnar dimerization

(Fig. 3(c)), the staggered dimerization (Fig. 3(d)), vertical

saw-tooth (Fig. 3(e)) and inclined saw-tooth (Fig. 3(f)).

For a given lattice deformation, we diagonalize the

electronic Hamiltonian to obtain the total energy from

the Born–Oppenheimer approximation. We consider the

staggered dimerization (Fig. 3(b)) described by Jj =

J0+α(lj− lj−1) with lj = l+(−1)i+jσ, where α (β) is the

rate of changes of the longitudinal (transverse) hopping.

Then four separate bands are obtained as

εn(k) = (−1)n
√
µ(σ) + (−1)⌊n/2⌋ν(σ) , (2)

where for n = 1, 2, 3, 4,

µ(σ) = G2
m +∆J2 + 4J2

0 cos
2(kl + π/N) ,

ν2(σ) = 4(G2
0∆J2 + 4J2

0G
2
m cos2(kl + π/N)) ,

for G2
m = G2

0 + ε20 and ∆J = 2ασ. ⌊n/2⌋ represents the

integer part of n/2.

It follows the energy band diagram (Fig. 2(b)) that the

deformation opens four gaps in the original two overlapped

bands. The two gaps at k = ±π/(2l) are usual because

they only arise from the longitudinal deformation for a-

chain and b-chain, respectively. The other two gaps at

Fermi momentum kf = ± arccos(Gm/2J0)/l in the upper

band and k′f = π/l − kf in the lower band arise from the

coupling between the k-states in a-chain and the k− π/l-

states in b-chain with strength ασG0/2J0 approximately.

Fig. 3 (Color online) Schematic illustration of the
dimerization patterns including (a) original lattice, (b)
transverse, (c) columnar, (d) staggered, (e) vertical saw-
tooth, and (f) inclined saw-tooth. m and l are the lengths
of transverse and longitudinal directions, respectively. δ
and σ denote the static deformations along transverse
and longitudinal directions, respectively.

Next, we only consider the monovalent case that 2N

electrons fill in all the negative energy levels. Appar-

ently, the conventional gaps at k = ±π/(2l) have not

obvious effect on the conducting properties of the elec-
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trons because they are below the deformed Fermi sur-
face. The gaps opened at Fermi surfaces may decrease

the energy of the electrons by ∆Ee = E(δ)− E(0) where
E(δ) =

∑
n=1,3

∫
εn(k)dk and E(0) is the energy with-

out dimerization. The lattice deformation also increases

the energy of phonons by ∆Ep = 4KlNσ2 + 2KtNσ4/m2

where Kt and Kl are spring constants of transverse and
longitudinal directions, respectively. The minimization of

the total energy ∆E = ∆Ep + ∆Ee determines a stable
configuration with a phase diagram. The above calcula-

tion is carried out for the staggered case, but repeating it
for all deformations (Fig. 3) gives the total Peierls phase
diagrams for the generic boundary condition (Fig. 4(a))

and Möbius one (Fig. 4(b)). Here, the parameters are
chosen as G0 = 15ε0, J0 = 10ε0, α = β = ε0/m, and
l = m.

Fig. 4 (Color online) The phase diagrams of the ladder system with (a) the generic and (b) the Möbius boundary
conditions, which are plotted versus (Kl,Kt) in (a) and (b), respectively. The parameters are chosen as G0 = 15ε0,
J0 = 10ε0, α = β = ε0/m, and l = m. The distribution of the total energy ∆E versus (Kl,Kt) determines the
phases boundaries, which are plotted as dashed lines. The capitalized letters “S”, “I”, “R”, and “N”, represent
the staggered, the inclined saw-tooth, rung, and no dimerization, respectively.

The region of staggered dimerization pattern under the

Möbius boundary condition shrinks comparing with the

generic one. This fact means that metal phase is prefer-

able for a Möbius ladder system. Therefore, the above

phase diagrams show that the conducting properties can

be dramatically changed when the topology of the ladder

is switched. To further consider the topological effect on

conducting properties, the existence of zero modes will be

revisited for our Q1D system.

3 Continuum Model

We adapt the continuous field approach by regarding

the Möbius ladder as a one-dimensional system with long

range hopping (Fig. 1(c)). Without loss of generality, we

focus on the special case ε0 = 0. For a continuous field

approach, it is crucial to introduce an order parameter

∆(x) = −4αu(x), where u(x) is the continuous limit of

displacements (−1)juj .

The Hamiltonian of continuum model H = He + Hp

contains the phonon part

Hp =

∫ L

−L

dx
{ Kl

8α2l
∆2(x) +

M

32α2l
∆̇2(x)

+
Kt

46m2α4l
[∆(x+ L)−∆(x)]4

}
, (3)

and the electron part

He =

∫ 0

−L

dxΦ†(x)H (x)Φ(x) ,

where M is the mass of the single particle and L = Nl

is the length of the a-chain (b-chain), which approaches

infinity at the end of calculation. In the electron part, the

hopping electron could be described with a 4-component

spinor Φ(x) = [ϕ1(x), ϕ2(x), ϕ3(x), ϕ4(x)]
T. Physically,

ϕ1(x) (ϕ3(x)) and ϕ2(x) (ϕ4(x)) respectively represent the

left-traveling waves and right-traveling waves in a-chain

(b-chain). In this spinor representation, the Hamiltonian

density is expressed as σx, σy and σz,

H =

[
ivfσz∂x +∆(x)σx G(x)

G(x) ivfσz∂x +∆(x+ L)σx

]
, (4)

where vf = 2lJ0, and G(x) = G0 + β[∆(x) − ∆(x +

L)]2/(32mα2) is effective coupling between the a-chain

and b-chain.

To reflect the Möbius boundary condition in our Q1D

model (Fig. 1(c)), we take the period 2L for bound-

ary conditions Φ(x + 2L) = Φ(x) rather than L for the

generic case. With this boundary condition, we solve

the Bogoliubov-de Gennes (BdG) equation H Φi(x) =

εiΦi(x), where i represents the i-th energy band of the

spectrum and Φi(x) = [ϕi
1(x), ϕ

i
2(x), ϕ

i
3(x), ϕ

i
4(x)]

T. At

zero temperature, the order parameter ∆(x) satisfies the

self-consistent equations

Kl

4α2l
∆(x)− Kt

45m2α4l
(∆(x+ L)−∆(x))3

=

{∑
i 2Re [ϕ

i,∗
1 (x)ϕi

2(x)] , for x ≤ 0 ,∑
i 2Re [ϕ

i,∗
3 (x)ϕi

4(x)] , for x > 0 ,
(5)
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which were obtained by the functional variation of
E(∆(x)) =

∑
i εi+Hp with respect to δ∆(x) and δ∆(x+

L). The sum is over the energy levels below the Fermi
surface.

4 Zero Modes for Topological Insulator
As we show as follows, some solutions of the above

BdG equation can exist as zero modes. When they hap-
pen to be ground state and robust under external pertur-
bations, the Möbius system then becomes a topological
insulator.

In the following, we only consider the case Kl ≪
Kt. In this case, three dimerization patterns of rung
(Fig. 3(b)), vertical-saw tooth (Fig. 3(e)) and inclined
saw-tooth (Fig. 3(f)) occur rarely. Thus we only need to
compare the energy of staggered with columnar one. Let
us first revisit Möbius ladder system with the staggered
dimerization characterized by ∆(x) = −∆(x+L). In this
phase, the order parameters in a- and b-chains are oppo-
site and display a Peierls phases domain wall. We also
notice that the columnar dimerization to be compared is
characterized by ∆(x) = ∆(x+ L).

For the staggered case, we assume a kink deformation
∆(x) = Γ tanh(x/ξ) with ξ = vf/Γ, which is so small
that the effective coupling between the a- and b-chain as
G(x) ≈ G0. In this sense, the BdG equation is written as[

ivfσz∂x +∆(x)σx G0

G0 ivfσz∂x +∆(x+ L)σx

]
Φi(x)

= εiΦi(x) . (6)

To solve the above equation, we apply a unitary transfor-
mation as Ψi(x) = UΦi(x), where the transformed wave-
function are defined as

Ψi(x) = [φi
1(x), φ

i
2(x), φ

i
3(x), φ

i
4(x)]

T

and the unitary matrix is

U =
1√
2


1 i 0 0

1 −i 0 0

0 0 1 i

0 0 1 −i

 . (7)

After the transformation, the BdG equation for Ψi(x) be-
comes[

ivfσx∂x −∆(x)σy G0

G0 ivfσx∂x −∆(x+ L)σy

]
Ψi(x)

= εiΨi(x) . (8)

As the solutions of the BdG equation with energy εi =
0, two degenerate solitonary states φi

1(3) = (ϕi
1(3) +

iϕi
2(4))/

√
2 and φi

2(4) = (ϕi
1(3) − iϕi

2(4))/
√
2 (illustrated

in Fig. 5(a) as the middle line εs = 0) can be found as one
with non-vanishing components φs

2(x) = φs
3(x) = F s

+(x),
and another with non-vanishing components φs

2(x) =
−φs

3(x) = F s
−(x) for

F s
±(x) =

√
1

2ξ
exp

(
± i

G0

vf
x
)
sech

(x
ξ

)
. (9)

These solitonary states are the zero modes existing at the
midgap. Since there is no such solitonary state in the
generic ladder, the existence of the solitons is absolutely
topological effect.

We note that the another two bands ε±v =
−
√

(vfk ±G0)2 + Γ2 (illustrated in Fig. 5(a) as two over-
lapped shadowed domains) fully occupied by the electrons
correspond to eigen functions

φv,±
1 (x) = ±φv,±

4 (x) = i exp(−ikx)/2
√
L ,

φv,±
2 (x) = ±φv,±

3 (x) = F v
±(x) exp(−ikx)/2

√
L ,

where

F v
±(x) =

Γ

ε±v

[
tanh

Γx

vf
+ i

(vfk ±G0)

Γ

]
(10)

represents a deviation from a plane wave in the kink order.
Then, it follows from the self-consistent equations Eq. (5)
that

Γ ≈ ∆0 exp(−B∆2
0) , (11)

where ∆0 = W exp(−A) is the order parameter for one-
dimensional uniformly dimerized system, W = 2vfkf ,
A = vfπKl/8α

2l, and B = vfπKt/2
7m2α4l with kf is

the Fermi momentum.

Fig. 5 (Color online) Schematics of the energy spec-
tra of the valence bands under (a) staggered and (b)
columnar dimerizations, where k±

S = kf ∓ G0/vf and

k±
C =

√
G2

0 + v2fk
2
f ± 2G0

√
v2fk

2
f + Γ2/vf . The shadow

regions represent the electron occupation in the energy
bands, and the brown straight line represents the soli-
tonary states.

Moreover, we can further prove that the above soli-
tonary states are the ground states. To this end we
calculate the total energy of the electron-phonon system
ES

T according to the phase shift[22] of the eigen-functions
θ±(k) = θ±−∞(k) − θ±+∞(k) = π + 2arctan(vfk ± G0)/Γ.
A straightforward algebra explicitly gives

ES
T = EC

T +
4Γ

π
− G2

0

vfkf
+ δ(Kt) , (12)

where EC
T is the total energy for the columnar dimeriza-

tion (Fig. 3(c)), and δ(Kt) = 13KtΓ
3vF /(3 × 44m2α4l)

results from the coupling between the a- and b-chain. The
second term in ES

T is usual energy increment due to the
exitance of solitonary states. The third term in ES

T results
from the difference in the total energies in two filling ways.
One corresponds to the staggered dimerization (Fig. 5(a))
with two lower bands −

√
(vfk ±G0)2 + Γ2 occupied by
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electrons, while the other corresponds to columnar one
(Fig. 5(b)) with two lower bands ±G0−

√
(vfk)2 + Γ2 oc-

cupied. For the latter the energy of electrons increases
because a part of electrons are forced to occupy higher
energy levels. If G0 is so large that δE = ES

T − EC
T is

negative, the ground state of the Möbius ladder system
corresponds to the staggered dimerization rather than the
columnar one. In this case the solitonary states are zero

modes existing as the ground state.
Actually, the topology of the system can protect the

solitonary state from external perturbations. For exam-

ple, when the soliton propagates along the longitudinal di-
rections without spreading, the energy increment caused
by moving soliton with velocity vs from the time evolu-

tion of order parameter ∆(x, t) ≡ Γ tanh(x − vst)/ξ is
∆Es = Mv2sΓ

3/(24vfα
2l), which could be much smaller

than the exciting energy δE. Since the moving soliton

is robust and charged, the Möbius ladder with staggered
dimerization is actually electrically conductive.

5 Conclusion

We have shown that the Möbius molecular devices as-

sisted by Peierls instability could be regarded as the sim-

plest example of topological insulator. When the Möbius

boundary condition is applied to the ladder system, the

solitonary solutions emerge in such a quasi-one dimen-

sional system as ground state in the Peierls phases do-

main wall. The existence of the zero modes is the con-

sequence of both the electron-phonon interaction and the

Möbius boundary condition. The electron-phonon inter-

action causes the dimerization and the transporting soli-

tonary states. The Möbius boundary condition just guar-

antees that the solitonary solutions are the ground state.

Such zero modes actually are protected by the Z2 topology

of the Möbius strip in the real space, while the widely stud-

ied topological properties in solid state physics emerge in

the momentum space. As the charged zero modes propa-

gating without spreading, the conducting properties of the

Möbius molecular devices are pretty dramatic for topolog-

ical insulator.

Acknowledgments

The authors thank Nan Zhao for helpful discussion.

References
[1] M.Z. Hasan and C.L. Kane, Rev. Mod. Phys. 82 (2010)

3045.

[2] X.L. Qi and S.C. Zhang, Phys. Today 63 (2010) 33.

[3] J.E. Moore, Nature (London) 464 (2010) 194.

[4] X.L. Qi and S.C. Zhang, Rev. Mod. Phys. 83 (2011) 1057.

[5] S.C. Zhang, Physics 1 (2008) 6.

[6] L. Fu, C.L. Kane, and E.J. Mele, Phys. Rev. Lett. 98
(2007) 106803.

[7] L. Fu and C.L. Kane, Phys. Rev. B 76 (2007) 045302.

[8] J.C.Y. Teo, L. Fu, and C.L. Kane, Phys. Rev. B 78 (2008)
045426.

[9] J.E. Moore, Y. Ran, and X.G. Wen, Phys. Rev. Lett. 101
(2008) 186805.

[10] X.L. Qi, T.L. Hughes, and S.C. Zhang, Phys. Rev. B 78
(2008) 195424.

[11] A.M. Essin and J.E. Moore, Phys. Rev. B 76 (2007)
165307.

[12] H. Obuse, et al., Phys. Rev. B 78 (2008) 115301.

[13] Y. Ran, Y. Zhang, and A. Vishwanath, Nat. Phys. 5
(2009) 298.

[14] J. Li, et al., Phys. Rev. Lett. 102 (2009) 136806.

[15] A. Bermudez, et al., Phys. Rev. Lett. 102 (2009) 135702.

[16] B.A. Bernevig, T.L. Hughes, and S.C. Zhang, Science 314
(2006) 1757.

[17] M. König, et al., Science 318 (2007) 766.

[18] J.E. Moore and L. Balents, Phys. Rev. B 75 (2007)
121306(R).

[19] Z.L. Guo, et al., Phys. Rev. B 80 (2009) 195310.

[20] Z.L. Guo, Z.R. Gong, and C.P. Sun, arXiv:0904.2231
(2009).

[21] W.P. Su, J.R. Schrieffer, and A.J. Heeger, Phys. Rev.
Lett. 42 (1979) 1698.

[22] H. Takayama, Y.R. Lin-Liu, and K. Maki, Phys. Rev. B
21 (1980) 2388.

[23] W.P. Su, J.R. Schrieffer, and A.J. Heeger, Phys. Rev.
Lett. 42 (1979) 1698.

[24] V. Balzani, A. Credi, and M. Venturi, Molecular Devices
and Machines: A Journey Into the Nanoworld, Wiley-
VCH Verlag GmbH & Co. KGaA, Weinheim (2003).

[25] A. Nitzan and M.A. Ratner, Science 300 (2003) 1384.

[26] K. Burke, R. Car, and R. Gebauer, Phys. Rev. Lett. 94
(2005) 146803.

[27] C. Zhang, et al., Phys. Rev. Lett. 92 (2004) 158301.

[28] M.J. Comstock, et al., Phys. Rev. Lett. 99 (2007) 038301.

[29] A. LaMagna and I. Deretzis, Phys. Rev. Lett. 99 (2007)
136404.

[30] C.Q. Wu, J.X. Li, and D.H. Lee, Phys. Rev. Lett. 99
(2007) 038302.

[31] N. Zhao, et al., Phys. Rev. B 79 (2009) 125440.


