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Abstract Symmetry is conventionally described in a polarized manner that the system is either completely symmetric
or completely asymmetric. Using group theoretical approach to overcome this dichotomous problem, we introduce the
degree of symmetry (DoS) as a non-negative continuous number ranging from zero to unity. DoS is defined through
an average of the fidelity deviations of Hamiltonian or quantum state over its transformation group G, and thus is
computable by making use of the completeness relations of the irreducible representations of G. The monotonicity of
DoS can effectively probe the extended group for accidental degeneracy while its multi-valued natures characterize some
(spontaneous) symmetry breaking.
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1 Introduction

Symmetry is a theme of modern physics, which plays a
crucial role in the understanding of fundamental interac-
tions of the microscopic world[1] as well as the emergence
of macroscopic orders.[2] It has become evident that both
the elementary particle structure and the emergent phe-
nomena, e.g., superconductivity and Bose–Einstein con-
densation, are originated from symmetry and its sponta-
neous breaking.[3−5] Its applications range from particle
physics[6−9] to condensed matter physics,[10−11] and even
to biological systems.[12−13]

Conventionally, symmetry is dealt in a dichotomous
fashion that a physical system either possesses or not pos-
sesses a symmetry. In the group theoretical approach, the
symmetry of a quantum system is usually considered by
checking that if the system is invariant or not under some
transformations, which sometimes form a symmetry group
G. The symmetry breaking of the system can be described
as a reduction of the symmetry group to its subgroup. Al-
though this conventional approach has succeed in classi-
fying the spectrum structure and even various phases of
matters, it is not natural for us because there is not a room
for the intermediate circumstance, namely, a continuous
measure of symmetry has not been found. Actually, such
intermediate issues exist objectively and need to be prop-
erly quantified. For example, a charged particle moving
in a central potential possesses SO(3) symmetry. When

a static magnetic field is applied, no matter how weak it
is, the SO(3) symmetry is said to be broken into SO(2).
However, SO(3) symmetry can still be approximately used
to simplify the equations describing the dynamics and the
energy level structure when the magnetic field is weak
enough. Another example is the nuclear system that pos-
sesses the isospin SU(2) symmetry and thus its energy
spectrum of strong interaction can approximately, but ef-
fectively, be classified, although the electromagnetic force
could break this SU(2) symmetry.

In this regard, it would be of much interest to present
a quantitative description of symmetry and its (sponta-
neous) breaking in this intermediate circumstance, which
could determine the extent of approximation for using
a given symmetry in practice. To this end, we, in this
paper, introduce a continuous measure of symmetry, i.e.,
the degree of symmetry (DoS), by considering that sym-
metry is a relative concept: the particular subset G of
all physically-allowed transformations needs to be speci-
fied for assigning a symmetry to a physical system. More
specifically, for a given set G of transformations on the
Hamiltonian or the quantum state F = H , or ρ, we first
define a dual of DoS, the degree A(G,F ) of asymmetry
(DoAS), by averaging the fidelity deviations (see defini-
tion below) over G. Generally, the DoAS ranges from zero
to unity, and thus the DoS S(G,F ) = 1 − A(G,F ) also
satisfies 0 ≤ S(G,F ) ≤ 1. Evidently, S(G,F ) offers sym-
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metry an intermediate description to avoid the dichotomy
in the conventional group theoretical analysis.

We will show that, if we choose G as a group, the
DoS, bounded with 1/2 ≤ S(G,F ) ≤ 1, facilitates a gen-
eral computable measure of symmetry based on the ir-
reducible representations of G. It is potential in iden-
tifying various natures of symmetry that are important
to emergent phenomena, such as the spontaneous sym-
metry breaking (SSB). For example, the thermodynamic
SSB corresponds to multi-valued natures of DoS at the low
temperature, which is similar to the depiction of the spon-
taneous magnetization.[14] It is also shown that the multi-
level crossing by a proliferation of energy levels brings a
peak to the DoS and the extended group can be given to
account for the hidden symmetry from accidental degen-
eracy.

This paper is organized as follows: In Sec. 2, the DoS
is introduced and its several properties as well as a com-
putational feasible form are elucidated with the help of
group theory. In Sec. 3, the general behavior of DoS un-
der symmetry breaking is investigated, and the discussions
are supported with two examples. The next two sections
represent the applications of the DoS in identifying acci-
dental level crossings as well as the spontaneous symmetry
breaking. The conclusion is given in Sec. 6.

2 Degree of Symmetry

We consider a quantum system with Hamiltonian H ,
and a set G of nG transformations on its Hilbert space H.
When OHO−1 = H for O ∈ G, we say that H (the quan-
tum system) is symmetric with respect to the transfor-
mation O. Actually, all symmetric transformations form
a group G′(⊂ G). It is obvious that, the deviations of
OHO−1 from H measure the extent of the asymmetry
of H with respect to the transformation set. Thus, we
use their average over G to define the degree of symmetry
breaking (asymmetry) DoAS

A(G,H) =
1

4|H̃ |2
|[R(g), H ]|2 , (1)

where |O| =
√

Tr{O†O} indicates the Frobenius norm[15]

while f(g)|G ≡ f(g) = n−1
G

∑

g∈G f(g) is an average of
a (group) function f(g) defined on G, and later the sub-
script G will be occasionally omitted; if G is a group, then
R : g → R(g) ∈ End (H) is a d-dimensional representation
of g ∈ G. Otherwise, R(g) represents a unitary transfor-
mation on H. Here, |[R(g), H ]|2 = |R(g)†HR(g) − H |2
is the fidelity deviation of H under the action of g, and
H̃ = H − d−1Tr{H} is a re-biased Hamiltonian such
that it is invariant under the zero-point energy shifting
H → H + ǫ for ǫ being a real number.

It is easy to prove that 0 ≤ A(G,H) ≤ 1, thus the DoS
defined by S(G,H) = 1 −A(G,H) or

S(G,H) =
1

4|H̃|2
|{R(g), H̃}|2 (2)

ranges from zero to unity and thus quantifies the extent
of the symmetry of H with respect to G. The above def-
inition of DoS is evidently reasonable in physics since it

possesses the following properties (for the proofs see Ap-
pendix A): (i) Tighter bound when G forms a transforma-
tion group 0 ≤ A(G,H) ≤ 1/2 ≤ S(G,H) ≤ 1; (ii) Inde-
pendence of DoS on the basis, i.e., S(WGW †,WHW †) =
S(G,H), where W is a unitary transformation and
WGW † = {WR(g)W †|g ∈ G}; (iii) Scaling invariance,
i.e., S(G, λH) = S(G,H); (iv) Independence of the choice
of the zero-point energy, i.e., S(G,H + ǫ) = S(G,H); (v)
Hierarchy property nG′S(Gs, H) ≤ nGS(G,H) for a sub-
set Gs(⊂ G) with nG′ elements.

When G becomes a group, in the spaces H(l) of its l-th
irreducible representations with finite dimensions dl, the
DoS S = S(G,H) is re-expressed as

S =
1

2
+

∑

l

1

2dl

(

∑

α

〈l, α|H |l, α〉
|H̃ |

− Tr{H}dl

d|H̃ |

)2

, (3)

where |l, α〉 is a basis vector of H(l) (α = 1, 2, . . . , dl), and
we have used the completeness relations of irreducible rep-
resentations (see Appendix B). The bisection point 1/2
from property (i) is also reflected in above equation, since
each term contributes non-negatively in the summation
over l. We point out that, by using Eq. (3), DoS is fea-
sible to be computed based on the measurements with
respect to the basis {|l, α〉}. Otherwise, for a continuous
group, a straightforward calculation of DoS from Eq. (2)
should need to carry out the group integral with the Haar
measure, e.g., the sum over SO(3) becomes a Lie group
integral (see Eqs. (A44) and (A56)).

3 Symmetry Breaking

Let G be a symmetry group of the quantum system
with Hamiltonian H . A perturbation H ′ = λV breaks the
symmetry into the subgroup Gs(⊂ G), i.e., [V,R(g)] 6= 0
for g ∈ G − Gs and [V,R(g′)] = 0 for g′ ∈ Gs. For the
total Hamiltonian H(λ) = H + λV , we calculate the DoS
under the symmetry breaking (see Appendix C)

S(G,H(λ)) = 1 − A(G, V )λ2

λ2 + ξλ+ η
, (4)

where A(G, V ) is the DoAS of the Hermitian opera-
tor V , the other two coefficients are defined as ξ =
2Tr{H̃Ṽ }|Ṽ |−2 and η = |H̃|2|Ṽ |−2. The above equa-
tion exactly reflects the duality between symmetry and
asymmetry: the maximal symmetry breaking due to the
perturbation corresponds to the minimal symmetry of the
considered system. When |λ| is increased, there exists a
special point λA = −2ξ−1η where the DoS reaches a local
minimum Smin = 1 − A(G, V ) csc2 ϕ; here ϕ is the angle
between H̃ and Ṽ (see Eq. (A35)).

The following two examples are used to illustrate the
above conception on quantifying the extent of symmetry
and its breaking. First, let us consider a particle residing
on a four-site lattice with the following Hamiltonian

H =
∑

i

ǫ|i〉〈i| +
∑

ij

h|i〉〈j| , (5)

where |i〉 (i = 0, 1, 2, 3) is the single particle state with site
i occupied. The site energy ǫ and the hopping strength h
are site-independent for the regular tetrahedron geometry
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(see Fig. 1(a)), and thus H is symmetric to all transfor-
mations from the Td group, which contains (combined)
rotations and mirror reflections sending a regular tetrahe-
dron into itself.[16] In this example, we let the symmetry
Td break into C3v through the following perturbation

H ′ = λ
[

δ0|0〉〈0| + δ1

3
∑

i=1

(|i〉〈0| + h.c.)
]

, (6)

where λδ0 and λδ1 are the deviations of the energy and
the coupling related to the 0-th site. It is well known that
C3v has two one-dimensional irreducible representations
A1 and A2, as well as one two-dimensional irreducible rep-
resentation E,[16] which correspond to the three kinds of
energy levels with one or two-fold degeneracies.

Fig. 1 (Color online) (a) Top: Schematic of a four-site lattice arranged into the regular tetrahedron geometry,
with Hamiltonian H and symmetry group Td. Bottom: The Td symmetry is broken into C3v upon adding the
perturbation H ′ = λV , which changes the hopping strength as well as the site energy relevant for the 0th site.
(b) Degree of symmetry (DoS) vs. λ for the four-site model (black solid) and the angular momentum model (blue
dashed). The asymptotic value S(Td, V ) (black dashed) and the local minimum λA (red vertical line) for the
four-site model are also shown. (c) Energy spectrum of the four-site model vs. 2λ. Red line indicates the two
degenerate E levels. Avoid level crossing of the two A1 levels is shown by the grey dashed lines.

The above symmetry breaking from Td to C3v is quan-
tified by the DoS through Eq. (4) with G = Td. Straight-
forward calculation shows exact results A(Td, V ) = (2γ2+
16)−1(γ2 + 4), ξ = 16(γ2 + 8)−1δ−1

1 h, and η = ξδ−1
1 h.

Here, γ = δ−1
1 δ0 is the ratio between the two parameters

in H ′. As shown in Fig. 1(b), the DoS reaches unity when
λ = 0, indicating the full Td symmetry that possessed by
the original Hamiltonian H . The symmetry breaking per-
turbation H ′ suppresses the DoS first quadratically in λ
and then, as |λ| further increased to approach the strong
perturbing limit (|λ| → ∞), reaches a γ-dependent asymp-
totically value (2γ2 + 16)−1(γ2 + 12).

In this model, the special point λA = −2δ−1
1 h,

where the DoS reaches the local minimum, indicates
an avoid level crossing in the energy spectrum. To
see this, we rewrite H(λ) in terms of the standard ba-
sis of irreducible representations by using the projection
operator method.[16−17] The resulting four-dimensional
Hilbert space contains two A1-representations and one E-
representation of C3v.[16] The two levels that transform
according to the two A1-representations are coupled and
the corresponding avoid level crossing point λ∗ is related
to λA by

λ∗ =
6 − γ

12 + γ2
λA . (7)

Especially, for δ0 ≪ δ1 the avoid level crossing happens
approximately at λA/2 (see Figs. 1(b) and 1(c)).

Another example demonstrates the DoS of the break-
ing of the continuous symmetry. The system we consid-
ered is a particle with angular momentum j, whose Hamil-
tonian reads

H = ǫJ2 , H ′ = λJz , (8)

where Ji (i = x, y, z) are components of the angular mo-
mentum operator and J2 = J2

x + J2
y + J2

z . In this model,
the O(3) symmetry of H is broken by the perturbation,
described by H ′, to O(2). With G = O(3), the DoS is
calculated as 1− [2λ2 + ǫ2j(j+2)]−1λ2 (see Appendix D).
Unlike the previous model, here the DoS does not show
a local minimum and decays monotonically as |λ| increas-
ing. Comparison with the generic result Eq. (4) indicates
the underlying condition Tr{H̃Ṽ } = 0, which is fulfilled
by the Hamiltonian Eq. (8).

4 Accidental Degeneracy

Accidental degeneracy of energy levels appears in a
quantum system when its parameters are changed to cause
a level crossing. It is usually not relevant to the geometric
symmetry, but our DoS can reveal the existence of the hid-
den symmetry. Actually, accidental degeneracy also im-
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plies symmetry. The greater the degeneracy, the greater
the symmetry.

For the general Hamiltonian H(λ) defined above, we
introduce the additional transformations: the U(2) op-
erations on the two λ-dependent energy levels of H(λ)
(or U(N) operations for the more general N levels cross-
ing), which will become degenerate as λ tuned to λ0. Be-
cause H(λ0) is proportional to the identity operator in
the degenerate subspace and, as a result, commuted with
all U(2) operations, the symmetry group G of H(λ0) is
extended to a larger one GT = 〈G,U(2)〉, which is gen-
erated by elements in G and U(2). It is expected that
the behavior of DoS could manifest the hidden symme-
try that implied by the enlarged group GT : the level
crossing at λ0 could result in a local dip in the DoAS,
when the parameter λ is tuned close to λ0. To see
this, we expand the Hamiltonian linearly around λ0, i.e.,
H(λ) ≈ H(λ0)+∂λH(λ0)(λ−λ0). Since [R(g), H(λ0)] = 0

for g ∈ GT , the DoAS is written as

A(GT , H(λ)) ∝ A(GT , ∂λH(λ0))(λ − λ0)
2 . (9)

Thus, by the duality, the accidental degeneracy indeed
manifests itself as a local maximum at λ0 in DoS.

To illustrate the above idea, we consider the following
three-site model whose Hamiltonian is of the same form
as Eq. (5) except that i ∈ {1, 2, 3}. And the perturbation
term

H ′ = λ[|1〉〈1| + |3〉〈3| − (|1〉〈3| + h.c.)] (10)

breaks the symmetry from D3 to Z2 = {e, σ}. Here,
the transformation σ interchanges the basis state |1〉 with
|3〉. The energy spectrum of H(λ) contains two Γ1 levels
E1± = ǫ+h/2±λ02 and one Γ2 level E2 = ǫ−h+2λ, where
Γi=1,2 are two irreducible representations of Z2. The spec-
trum shows two accidental degeneracies between the Γ1

and the Γ2 levels at λ01 = 0 and λ02 = 3h/2, respectively
(see Fig. 2(b)).

Fig. 2 (Color online) (a) Schematics of the three-site model, with symmetry D3 breaking into Z2 by the
perturbation Eq. (10). (b) Energy spectrum vs. λ/h for the three-site model, showing two accidental degeneracies
at λ01 and λ02 (blue vertical line). (c) DoS vs. λ/h with respect to GT , showing that the accidental degeneracy
at λ02 is identified with the maximum of the DoS.

Indeed, at the accidental degeneracy, H(λ02) becomes
more symmetric since there exists the additional symmet-
ric transformations of U(2): R(ω0; n̂, ω) = exp[i(ω0 −
n̂ · ~sω)] with pseudo spin-1/2 operators ~s defined by
sx = (|ψ1+〉〈ψ2| + |ψ2〉〈ψ1+|)/2 et al. Here, |ψm〉 is the
eigenstate associated with level Em. The extended sym-
metry group GT for H(λ02) is still U(2) since Z2 ⊂ U(2)
(see Appendix E). Thus, the two-fold degenerate sub-
space supports a two-dimensional irreducible representa-
tion of GT . It is shown that the DoS S(GT , H(λ))=
1 − 3[λ2 − λ02λ + λ2

02]
−1(λ − λ02)

2/8 reaches the unity
when λ = λ02 (see Fig. 2(c)). Therefore, the DoS indeed
signals the hidden symmetry. We notice that, without the
geometric symmetry, the above U(2) symmetry defined in
the subspace spanned by |ψ1+〉 and |ψ2〉 at the acciden-
tal degenerate point is similar to the dynamical symmetry

SO(4) of the non-relativistic hydrogen atom.[18]

5 Degree of Symmetry of Quantum State and
Spontaneous Symmetry Breaking

In emergent phenomena, the symmetry of the sys-
tem ground state can be different from that of the un-
derlying Hamiltonian or Lagrangian. This difference is
roughly regarded as the spontaneous symmetry breaking
(SSB).[2,5,9] For a better depiction of those phenomena,
we need to introduce the DoS of quantum state (DoSS) ρ.
The similar issue has been investigated through asymme-
try measure,[19−21] which was found to give more stringent
restrictions to dynamics than Noether’s theorem,[22] and
was shown to be linked with interesting topics such as find-
ing tighter quantum speed limits;[23] other direct defini-
tion through the entropy has also been introduced.[24−26]
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Here, we use an analog to the DoS of Hamiltonian Eq. (2)
to define the DoSS as

S(G, ρ) =
1

4|ρ|2 |{R(g), ρ}|2 , (11)

where ρ is the density matrix of a quantum state. Advan-
tages of above definition instead of the entropy one is that
this definition automatically possesses the similar proper-
ties (1)–(5) except for S(G, ρ) = S(G, ρ + ǫ), which we
need not to require for physics.

We now use DoSS to characterize the SSB in ther-
modynamics. We consider the thermalization of a quan-
tum system with degenerate ground states {|Gα〉|α =
1, 2, . . . , dG}, i.e., H |Gα〉 = ε0|Gα〉.[27] At the zero tem-
perature such system will have a non-vanishing entropy
S = kB ln dG, known as the modified third law of
thermodynamics.[14] By introducing a perturbation H ′ =
λV to break the symmetry so that |Gα=0 = G0〉 be-
comes the unique ground state, the thermodynamic SSB is
described as the following two non-commutative limiting
processes: (i) T → 0 and then λ→ 0; (ii) λ→ 0 and then
T → 0. In these two non-commutative limiting processes,
the following state

ρ =
1

Z

∑

α6=0
e−εα/T |Gα〉〈Gα|

+
1

Z
e−ε0/T |G0〉〈G0| + · · · (12)

will approach to

ρf1 = |G0〉〈G0| , ρf2 = d−1
G

∑

α

|Gα〉〈Gα|

respectively (see Fig. 3(a)).
To see the quantitative details of such thermodynamic

SSB, we use the DoSS defined by Eq. (11). LetG be a sym-
metry group of H , and {|Gα〉} span an irreducible repre-
sentation of G. Because ρf2 is proportional to the identity
operator, thus [R(g), ρf2] = 0. This implies that the limit-
ing process (ii) results in a final state with S(G, ρf2) = 1.
On the other hand, from Schur’s theorem,[16] in the lim-
iting process (i) there always exists some g ∈ G such that

[R(g), ρf1] 6= 0 and consequently S(G, ρf1) < 1. This
in turn implies an SSB since the final state ρf1 does not
retain the full symmetry of the underlying microscopic
Hamiltonian H .

The above relation between the DoSS and ρf1,2 sug-
gests the multi-valued natures of DoSS at (T = 0, λ = 0)
upon different limiting processes as an SSB witness

lim
β→∞

lim
λ→0

S(G, ρ) = 1 , lim
λ→0

lim
β→∞

S(G, ρ) < 1 , (13)

where β = 1/T is the inverse temperature.
To illustrate the SSB with an example, let us con-

sider the angular momentum model Eq. (8) again, which
shows a spontaneous breaking of O(3) symmetry. In the
subspace with j = 1/2, the ground state is two-fold de-
generate without H ′, i.e., |1/2,±1/2〉. For a generic ther-
mal state ρ = Z−1 exp[−βH(λ)], DoSS is shown to be
S(O(3), ρ) = (3 + cosh−1 βλ)/4 (see Appendix F), whose
multi-valued natures at (T = 0, λ = 0) is shown in
Fig. 3(b). Specifically, when βǫ ≫ 1 while λ 6= 0 the
DoSS is nearly at a constant value 3/4. Then, by tun-
ing the coupling λ to zero, the DoSS remains fixed at the
same constant value (see (i) in Fig. 3(b)). In contrast, if
one first fixes the coupling λ = 0 at the high temperature,
the DoSS as a function of β from zero to infinity will fol-
low the blue arrowed line (corresponding to the possess
(ii)) in Fig. 3(b). In the latter case, the DoSS at large β
is unity. In analog to Eq. (13), in this example it is shown
that

lim
β→∞

lim
λ→0

S(G, ρ) = 1 , lim
λ→0

lim
β→∞

S(G, ρ) =
3

4
. (14)

Here, G = O(3). On the other hand, the difference
in DoSS reflected by above equations is also understood
through inspecting on the final state, which is ρf1 =
|1/2,−1/2〉〈1/2,−1/2| or ρf2 = 2−1

∑

m |1/2,m〉〈1/2,m|
upon limiting processes (i/ii). Clearly, ρf1 is not invariant
under the π-rotation that represented by the σx operation
in the j = 1/2 subspace, thus results in a DoSS smaller
than unity.

Fig. 3 (Color online) (a) Energy spectrum of a system with degenerate ground states {|Gα〉} at λ = 0. Upon
whether T → 0 (i) before or (ii) after λ → 0, the thermal equilibrium state Eq. (12) approaches different final
states. (b) DoS of quantum state (DoSS) S(O(3), ρ) vs. λ/ǫ and βǫ for the angular momentum model. The
multi-valued natures of the DoSS at T = 0 and λ = 0 are reflected as the two non-commuting limiting processes
indicated by (i) and (ii).
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6 Conclusion

In this paper, we introduce a continuous measure, the

degree of symmetry (DoS), for the symmetry of quantum

system, which largely extrapolates the dichotomous ap-

proach of symmetry based on group representation theory.

It is shown that the DoS possesses some good properties,

such as basis-independent, invariant under the zero-point

energy shifting as well as the scaling transformation. Since

it can be expressed as an average of physical operators

under the basis of irreducible representations for trans-

formation groups, this measure is thus computable and

detectable based on some quantum measurements.

In contrast to the previous explorations based on

the abstract concepts of fuzz set[28] and transform

information,[29] our introduced DoS can feasibly open

many applications in physics. As illustrated in this paper,

the DoS is capable of identifying symmetry relevant phe-

nomena and effects, such as the accidental level crossings

and the spontaneous symmetry breaking. This, therefore,

implies that the DoS could be a useful measure in related

future studies, e.g., in characterizing systems near quan-

tum criticality since it is closely related to the multi-level

crossings.[30]

Appendices

Following appendices are organized as follows: In ap-

pendix A we provide proofs to several properties of the

degree of symmetry (DoS) that have been mentioned in

the main text. In appendix B, the DoS is rewritten under

the basis of the irreducible representations of transforma-

tion group. In appendix C, the generic expression for DoS

under symmetry breaking perturbation is derived and the

existence of a special point λA where the DoS reaches lo-

cal minimum is discussed. Finally, the calculation details

to three examples in the main text are given in appendices

D, E, and F, respectively.

Appendix A: Proofs to Properties of the DoS

In the following we present the proofs to five basic

properties of DoS S(G,H). To do so, we first show that

the degree of asymmetry (DoAS) A(G,H) is bounded, i.e.,

0 ≤ A(G,H) ≤ 1.

Proof Firstly, for any operator O,

|O|2 = Tr{O†O} ≥ 0 . (A1)

The equality holds if and only if O = 0. As a consequence,

A(G,H) =
1

4|H̃|2
|[R(g), H ]|2 ≥ 0 . (A2)

Then, according to Schwarz inequality |Tr{A†B}| ≤
√

Tr{A†A}Tr{B†B},

A(G,H) =
1

4|H̃|2
|[R(g), H ]|2 =

1

4|H̃|2nG

∑

g∈G

|[R(g), H ]|2

=
1

4|H̃|2nG

∑

g∈G

|[R(g), H̃ ]|2

=
1

4|H̃|2nG

∑

g∈G

2Tr{H̃H̃} − Tr{R(g)†H̃R(g)H̃}

− Tr{H̃R(g)†H̃R(g)}

≤ 1

2|H̃|2nG

∑

g∈G

Tr{H̃H̃} + |Tr{R(g)†H̃R(g)H̃}|

≤ 1

2|H̃|2nG

∑

g∈G

[Tr{H̃H̃} +

√

Tr{H̃2}2]

=
1

|H̃ |2nG

∑

g∈G

Tr{H̃H̃} = 1 , (A3)

where
√

Tr{H̃2}2 = Tr{H̃2} has been used in above

derivation, since the spectrum of H̃2 is non-negative.

Now let us consider the five properties of DoS S(G,H):
Property 1 Tighter bound when G forms a transforma-

tion group

0 ≤ A(G,H) ≤ 1

2
≤ S(G,H) ≤ 1 . (A4)

Proof When G admits a group structure, then the re-

arrangement theorem is applicable and, consequently, the

average of a group function is invariant under the mul-
tiplication by a same group element to each one of the

summing terms

1

nG

∑

g∈G

f(g) =
1

nG

∑

g∈G

f(gg1) , (A5)

where g1 ∈ G is fixed. By summing over g1 in Eq. (A5),
∑

g∈G

f(g) =
1

nG

∑

g1∈G

∑

g2∈G

f(g1g2) . (A6)

Furthermore, because both g and g−1 contribute in the

group function averaging, then it is also essential that
∑

g f(g) =
∑

g f(g−1).

Now, one can show that
∑

g Tr{R(g)†H̃R(g)H̃}, which
appears in Eq. (A3), is actually non-negative. The reason-

ing is as follows
∑

g∈G

Tr{R(g)†H̃R(g)H̃}

=
1

nG

∑

g1∈G

∑

g2∈G

Tr{R(g1g2)
†H̃R(g1g2)H̃}

=
1

nG

∑

g1∈G

∑

g2∈G

Tr{R(g2)
†R(g1)

†H̃R(g1)R(g2)H̃}

=
1

nG

Tr
{

∑

g1∈G

R(g1)
†H̃R(g1)

∑

g2∈G

R(g2)H̃R(g2)
†
}

=
1

nG

Tr
{

∑

g1∈G

R(g1)
†H̃R(g1)

∑

g2∈G

R(g2)
†H̃R(g2)

}

= Tr
{( 1√

nG

∑

g∈G

R(g)†H̃R(g)
)2}

, (A7)

which is the trace of a squared Hermitian operator, whose

eigenvalues are real and non-negative. This implies that
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Eq. (A7) is non-negative
∑

g∈G

Tr{R(g)†H̃R(g)H̃} ≥ 0 . (A8)

Then, it follows from the fourth line in Eq. (A3) that

A(G,H)=
1

4|H̃|2nG

∑

g∈G

2Tr{H̃H̃}− 2Tr{R(g)†H̃R(g)H̃}

≤ 1

4|H̃|2nG

∑

g∈G

2Tr{H̃H̃} =
1

2
. (A9)

Together with Eq. (A2), then it follows that 0 ≤
A(G,H) ≤ 1/2. By definition S(G,H) = 1 − A(G,H),

thus 1/2 ≤ S(G,H) ≤ 1.

Property 2 Independence of DoS on the basis

S(WGW †,WHW †) = S(G,H) , (A10)

where WGW † is understood as performing the uni-

tary transformation W on the representation R(g), to

WR(g)W †, with g ∈ G.

Proof Since

W̃HW † = WHW † − 1

d
Tr{WHW †}

= WHW † − 1

d
Tr{H}

= W
(

H − 1

d
Tr{H}

)

W † = WH̃W † , (A11)

thus

S(WGW †,WHW †)

=
1

4|W̃HW †|2
|{WR(g)W †, W̃HW †}|2

=
1

4|WH̃W †|2
|{WR(g)W †,WH̃W †}|2

=
1

4|WH̃W †|2
|W{R(g), H̃}W †|2 , (A12)

but since

|WOW †|2 = Tr{WO†W †WOW †} = |O|2 , (A13)

thus Eq. (A12) is written as follows

S(WGW †,WHW †)

=
1

4|H̃|2
|{R(g), H̃}|2 = S(G,H) . (A14)

Property 3 Scaling invariance

S(G, λH) = S(G,H) , (A15)

Proof It is easy to prove.

Property 4 Invariance under the zero-point energy shift-

ing

S(G,H + ǫ) = S(G,H) . (A16)

Proof

S(G,H + ǫ) =
1

4|H̃ + ǫ|2
|{R(g), H̃ + ǫ}|2

=
|{R(g), H + ǫ− 1

dTr{H + ǫ}}|2
4|H + ǫ− Tr{H + ǫ}/d|2

=
1

4|H − Tr{H}/d|2

× |{R(g), H + ǫ− 1

d
Tr{H + ǫ}}|2

=
1

4|H̃ |2
|{R(g), H − 1

d
Tr{H}}|2

= S(G,H) . (A17)

Property 5 Hierarchy property

nG′S(Gs, H) ≤ nGS(G,H) , (A18)

where Gs(⊂ G) contains nG′ elements.

Proof

S(G,H) =
1

4|H̃|2
|{R(g), H̃}|2

=
1

4|H̃|2nG

∑

g∈G

|{R(g), H̃}|2

=
nG′

nG

1

4|H̃|2nG′

[
∑

g∈Gs

|{R(g), H̃}|2

+
∑

g∈G−Gs

|{R(g), H̃}|2]

≥ nG′

nG

1

4|H̃|2nG′

∑

g∈Gs

|{R(g), H̃}|2

=
nG′

nG

1

4|H̃|2
|{R(g), H̃}|2|Gs

=
nG′

nG

S(Gs, H) , (A19)

thus

nG′S(Gs, H) ≤ nGS(G,H) . (A20)

Appendix B: DoS in Irreducible

Representation Space

To carry out the average of the DoS over the transfor-

mation group G, we start from Eq. (2) of the main text

S(G,H) =
1

4|H̃|2
|{R(g), H̃}|2

=
1

4|H̃|2
1

nG

∑

g∈G

|{R(g), H̃}|2

=
1

4|H̃|2
1

nG

∑

g∈G

Tr{(R(g)†H̃ + H̃R(g)†)

× (R(g)H̃ + H̃R(g))}

=
1

4|H̃|2
1

nG

∑

g∈G

[2Tr{H2}+2Tr{R(g)†H̃R(g)H̃}]

=
1

2
+

1

2|H̃|2
1

nG

∑

g∈G

Tr{R(g)†H̃R(g)H̃} . (A21)
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In the irreducible representation space of G, R(g) has

the following direct-sum decomposition

R(g) =
∑

l

dl
∑

α,β=1

R
(l)
αβ |l, α〉〈l, β| . (A22)

It follows from Eq. (A22) that

1

nG

∑

g∈G

Tr{R(g)†H̃R(g)H̃}

=
1

nG

∑

g∈G

∑

ll′

dl
∑

α,β=1

dl′
∑

α′,β′=1

Tr{R(l)
αβ(g)∗|l, β〉〈l, α|

× H̃R
(l′)
α′β′(g)|l′, α′〉〈l′, β′|H̃}

=
∑

ll′

∑

αα′ββ′

〈l, α|H̃ |l′, α′〉〈l′, β′|H̃ |l, β〉

×
[ 1

nG

∑

g∈G

R
(l)
αβ(g)∗R

(l′)
α′β′(g)

]

. (A23)

By applying the completeness relations of irreducible rep-

resentations
dl

nG

∑

g∈G

R
(l)
αβ(g)∗R

(l′)
α′β′(g) = δll′δαα′δββ′ . (A24)

Equation (A23) is rewritten as
∑

ll′

∑

αα′ββ′

〈l, α|H̃ |l′, α′〉〈l′, β′|H̃ |l, β〉 1

dl
δll′δαα′δββ′

=
∑

l

1

dl

dl
∑

α,β=1

〈l, α|H̃ |l, α〉〈l, β|H̃|l, β〉

=
∑

l

1

dl

(

dl
∑

α=1

〈l, α|H̃ |l, α〉
)2

. (A25)

Insert Eq. (A25) into Eq. (A21) gives

S(G,H) =
1

2
+

1

2|H̃|2
∑

l

1

dl

(

dl
∑

α=1

〈l, α|H̃ |l, α〉
)2

=
1

2
+

1

2|H̃|2
∑

l

1

dl

(

dl
∑

α=1

〈l, α|H − 1

d
Tr{H}|l, α〉

)2

=
1

2
+

1

2|H̃|2
∑

l

1

dl

(

dl
∑

α=1

〈l, α|H |l, α〉 − dl

d
Tr{H}

)2

=
1

2
+

∑

l

1

2dl

(

dl
∑

α=1

〈l, α|H |l, α〉
|H̃ |

− Tr{H}dl

d|H̃ |

)2

. (A26)

Appendix C: Generic Behavior of DoS under

Symmetry Breaking

Perturbation

The generic expression for the DoS of a Hamiltonian

H(λ) = H + λV with respect to a symmetry group G of

H is written as

S(G,H(λ)) = 1 −A(G,H + λV )

= 1 − 1

4|H̃(λ)|2
|[R(g), H + λV ]|2

= 1 − 1

4|H̃(λ)|2
|[R(g), V ]|2λ2 , (A27)

where the relation [R(g), H ] = 0 has been used in above

derivation. The denominator is calculated as

|H̃(λ)|2 = |H(λ) − 1

d
Tr{H(λ)}|2

= |H̃ |2 + 2
[

Tr{HV }− 1

d
Tr{H}Tr{V }

]

λ+ |Ṽ |2λ2.(A28)

Thus Eq. (A27) is written as follows

S(G,H(λ)) = 1 − |[R(g), V ]|2
4|Ṽ |2

λ2

λ2 + ξλ+ η

= 1 − A(G, V )λ2

λ2 + ξλ+ η
, (A29)

where

ξ =
2

|Ṽ |2
[

Tr{HV } − 1

d
Tr{H}Tr{V }

]

=
2Tr{H̃Ṽ }

|Ṽ |2
, (A30)

η =
|H̃ |2
|Ṽ |2

. (A31)

Equation (A29) implies that

∂

∂λ
S(G,H(λ)) =

(2η + ξλ)λ

(λ2 + ξλ+ η)2
A(G, V ) . (A32)

Thus when λ = λA = −2η/ξ, the DoS reaches an extreme

value (minimum)

Smin = S(G,H + λAV ) = 1 − 4η

4η − ξ2
A(G, V ). (A33)

It follows from Eqs. (A30) and (A31) that

Smin = 1 +
|H̃ |2|Ṽ |2

Tr{H̃Ṽ }2 − |H̃ |2|Ṽ |2
A(G, V )

= 1 +
1

cos2 ϕ− 1
A(G, V )

= 1 − csc2 ϕA(G, V ) , (A34)

where

cosϕ =
Tr{H̃Ṽ }
|H̃ ||Ṽ |

. (A35)

The existence of above non-zero extreme point, i.e., at

λA = −2η/ξ, is related to ξ 6= 0. Especially, the DoS de-

cays monotonically as a function of |λ| if ξ = 0. Since Ṽ

differs from V only by a constant term and, in practical

case, Ṽ 6= 0, thus the condition ξ = 0 is equivalent to

Tr{H̃Ṽ } = 0 . (A36)

Appendix D: DoS for the Angular Momentum

Model

In the following, we give the derivation of the DoS for

the model given by Eq. (8) of the main text in detail. As

is known,

H(λ) = ǫJ2 + λJz . (A37)



No. 4 Communications in Theoretical Physics 431

We take the angular momentum J = 0, 1, 2, . . . , j and the

dimension of the Hilbert space is d = (j+1)2. It is shown

that

S(O(3), H(λ)) = 1 − 1

4|H̃(λ)|2
|[R(g), H(λ))]|2|O(3)

= 1 − λ2

4|H̃(λ)|2
|[R(g), Jz]|2|O(3)

=1− λ2

2|H̃(λ)|2
Tr{J2

z } −Tr{R(g)†JzR(g)Jz}|O(3).(A38)

|H̃(λ)|2 = Tr{H(λ) − 1

(j + 1)2
Tr{H(λ)}}2

= Tr{H(λ)}2 − 1

(j + 1)2
Tr{H(λ)}Tr{H(λ)}

= ǫ2
j

∑

i=0

i2(i+1)2(2i+1)+λ2

j
∑

i=0

1

3
i(i+1)(2i+1)

− 1

(j + 1)2

(

ǫ

j
∑

i=0

i(i+ 1)(2i+ 1)
)2

= j(j + 1)2(j + 2)
[ 1

12
ǫ2j(j + 2) +

1

6
λ2

]

. (A39)

Since O(3) can be expressed as a disjoint union of SO(3)

and îSO(3), where î denotes the inversion transformation

and it leaves the angular momentum unchanged [̂i, Jα] =

0,[31] then it is enough to focus the evaluation of group

average on SO(3) at this moment, whose group element

provides the following unitary transformation

R(g) = R(θ, φ, ω)

= e−iJzφ e−iJyθ e−iJzω e iJyθ e iJzφ . (A40)

Then for g ∈ SO(3)

Tr{J2
z} − Tr{R(g)†JzR(g)Jz}

= Tr{J2
z } − Tr{ e−iJzφ e−iJyθ e iJzω e iJyθ e iJzφJz

× e−iJzφ e−iJyθ e−iJzω e iJyθ e iJzφJz}
= Tr{J2

z } − (cos2 θ + sin2 θ cosω)Tr{J2
z }

= (sin2 θ − sin2 θ cosω)Tr{J2
z }

= (sin2 θ − sin2 θ cosω)

j
∑

i=0

1

3
i(i+ 1)(2i+ 1)

=
1

6
(sin2 θ − sin2 θ cosω)j(j + 1)2(j + 2) . (A41)

On the other hand, for g ∈ îSO(3) it follows from

[̂i, Jα] = 0 that î commutes with transformations from

SO(3) group. Thus a typical term in the average over the

transformation set îSO(3) always corresponds with some

term in the group average of SO(3)

Tr{J2
z} − Tr{[̂iR(g)]†Jz îR(g)Jz}

= Tr{J2
z } − Tr{R(g)†îJz îR(g)Jz}

= Tr{J2
z } − Tr{R(g)†Jz î

2R(g)Jz}

= Tr{J2
z } − Tr{R(g)†JzR(g)Jz} . (A42)

It follows from Eqs. (A38), (A39), (A41), and (A42) that

S(O(3), H(λ))

= 1 − λ2

2|H̃(λ)|2
Tr{J2

z } − Tr{R(g)†JzR(g)Jz}|O(3)

= 1 − λ2

2|H̃(λ)|2
1

2
[Tr{J2

z } − Tr{R(g)†JzR(g)Jz}|SO(3)

+ Tr{J2
z } − Tr{R(g)†JzR(g)Jz}|̂iSO(3)]

= 1 − λ2

2|H̃(λ)|2
Tr{J2

z } − Tr{R(g)†JzR(g)Jz}|SO(3)

= 1 − λ2

ǫ2j(j + 2) + 2λ2

1

2π2

∫ π

−π

dφ

∫ π

0

dθ sin θ

∫ π

0

dω

× sin2 ω

2
(sin2 θ − sin2 θ cosω)

= 1 − λ2

ǫ2j(j + 2) + 2λ2
. (A43)

Notice that the average over the group for G = SO(3) has

been replaced by the following Lie group integral[32]

1

nG

∑

g∈G

→ 1

2π2

∫ π

−π

dφ

∫ π

0

dθ sin θ

∫ π

0

dω sin2 ω

2
. (A44)

Appendix E: Example with Accidental

Degeneracy

Here, we show the details on the extended symmetry

group GT of the three-site model at accidental degener-

acy, which is a U(2) group defined in a two-dimensional

degenerate subspace, as well as the calculation of the cor-

responding DoS with respect to this extended group.

First let us consider the spectrum and eigenstates of

the model Hamiltonian. From Eqs. (5) and (10) of the

main text

H(λ) = H + λV

=
3

∑

i=1

ǫ|i〉〈i| +
∑

i6=j

h|i〉〈j| + λ[|1〉〈1| + |3〉〈3|

− (|1〉〈3| + h.c.)] . (A45)

The symmetry group of H(λ) at λ 6= 0 is the cyclic group

Z2 = {e, σ}, whose representation under the site basis

{|1〉, |2〉, |3〉} is given by

Rsite(e) =





1 0 0

0 1 0

0 0 1



 , Rsite(σ) =





0 0 1

0 1 0

1 0 0



 . (A46)

The energy spectrum and corresponding eigenstates

are

E1± = ǫ+
h

2
± 3

2
h , E2 = ǫ− h+ 2λ , (A47)

|ψ1+〉 =
1√
3
(|1〉 + |2〉 + |3〉) , (A48)
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|ψ1−〉 =
1√
6
(|1〉 − 2|2〉 + |3〉) , (A49)

|ψ2〉 =
1√
2
(|1〉 − |3〉) . (A50)

When λ = λ02 = 3h/2, it follows from Eq. (A47) that

E1+ and E2 become degenerate. Because this degeneracy

is not guaranteed by the Z2 symmetry, thus it is acci-

dental. At λ02, the Hamiltonian H(λ02) is invariant un-

der all U(2) operations within the two-dimensional sub-

space spanned by |ψ1+〉 and |ψ2〉.[33] Under the eigenbasis

{|ψ1−〉, |ψ1+〉, |ψ2〉}, where the Hamiltonian diagonalized

Heig(λ) =





E1− 0 0

0 E1+ 0

0 0 E2



 , (A51)

a U(2) transformation parametrized by n̂, ω, and ω0 is

written as

Reig(ω0; n̂, ω) =









1 0 0

0 e iω0

(

cos
ω

2
− i cos θ sin

ω

2

)

−i e−i(φ−ω0) sin θ sin
ω

2

0 −i e i(φ+ω0) sin θ sin
ω

2
e iω0

(

cos
ω

2
+ i cos θ sin

ω

2

)









, (A52)

where ω0, ω ∈ [0, 2π]; the unit vector

n̂ = sin θ cosφêx + sin θ sinφêy + cos θêz , (A53)

and [Reig(ω0; n̂, ω), H(λ02)] = 0.
Because of this U(2) hidden symmetry, the symme-

try group of H(λ) is extended at λ02. Namely, now
GT = 〈Z2,U(2)〉 is generated by the original symmetry
group Z2 as well as the U(2) group. For this specific
example, however, the group that generated is still the
U(2), since all elements in Z2 could be represented as
some U(2) operations. To see how this is achieved, we
rewrite the elements of Z2 Eq. (A46) under the eigenbasis
{|ψ1−〉, |ψ1+〉, |ψ2〉}

Reig(e) =





1 0 0

0 1 0

0 0 1



 , Reig(σ) =





1 0 0

0 1 0

0 0 −1



 . (A54)

Through direct comparison with Eq. (A52), it follows that

Reig(e) = Reig(0; n̂, 0) and Reig(σ) = Reig(π/2; êz, π),

hence Z2 ⊂ U(2) and, therefore, GT = U(2).

The DoS of H(λ) with respect to the extended group

GT = U(2) is now calculated as follows

S(GT , H(λ)) =
1

4|H̃(λ)|2
|{R(g), H̃(λ)}|2|U(2)

=
1

2
+

1

2|H̃(λ)|2

×Tr{Reig(n̂, ω)†H̃eig(λ)Reig(n̂, ω)H̃eig(λ)}|U(2) . (A55)

The average for the continuous group U(2) is evaluated as

a Lie group integral

f(g)|U(2) =
1

8π3

∫ 2π

0

dω0

∫ π

−π

dφ

∫ π

0

dθ sin θ

∫ 2π

0

dω sin2 ω

2
f(g) , (A56)

which together with Eqs. (A51), (A52) gives that

Tr{Reig(n̂, ω)†H̃eig(λ)Reig(n̂, ω)H̃eig(λ)}|U(2) =
1

4π2

∫ π

−π

dφ

∫ π

0

dθ

∫ 2π

0

dω
sin θ sin2 ω/2

12

× [45h2 − 12hλ+ 20λ2 + 3(3h− 2λ)2(cos 2θ + 2 cosω sin2 θ)] =
1

6
(3h+ 2λ)2 . (A57)

Thus Eq. (A55) is rewritten as

S(GT , H(λ)) = 1 − 3

8

(λ− λ02)
2

λ2 − λ02λ+ λ2
02

. (A58)

Appendix F: Example on the Spontaneous

Symmetry Breaking

Here, we provide details on the evaluation of the de-

gree of symmetry for quantum state (DoSS) in the angular

momentum model. We assume the following state with

density matrix

ρ =
1

Z
e−βH(λ) , (A59)

with the partition function Z = Tr{exp[−βH(λ)]} and

the Hamiltonian H(λ) as given by Eq. (A37).

For j = 1/2, Eq. (A59) is explicitly written as

ρ =
1

Z
e−β((3/4)ǫ+(1/2)λσz)

=
1

2 cosh(βλ/2)
e−(1/2)βλσz . (A60)

The DoSS is calculated based on Eq. (11) of the main text

S(O(3), ρ) =
1

4|ρ|2 |{R(g), ρ}|2|O(3)

=
1

4|ρ|2
1

2
[|{R(g), ρ}|2|SO(3) + |{R(g), ρ}|2|̂iSO(3)] .(A61)

But since [̂i, ρ] = 0, then for g ∈ îSO(3) a typical term in
the average over îSO(3) could be rewritten as

|{îR(g), ρ}|2 = Tr{(̂iR(g)ρ+ ρîR(g))†(̂iR(g)ρ+ ρîR(g))}
= Tr{(R(g)ρ+ ρR(g))†(R(g)ρ+ ρR(g))}
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=|{R(g), ρ}|2 , (A62)

which is equivalent to a corresponding term in the average
over SO(3). Because of this one to one correspondence, it
is then concluded that

|{R(g), ρ}|2|SO(3) = |{R(g), ρ}|2|̂iSO(3) , (A63)

and Eq. (A65) is rewritten as

S(O(3), ρ) =
1

4|ρ|2 |{R(g), ρ}|2|SO(3)

=
1

4|ρ|2
1

2π2

∫ π

−π

dφ

∫ π

0

dθ sin θ

∫ π

0

dω

× sin2 ω

2
|{R(θ, φ, ω), ρ}|2 . (A64)

The integrand in Eq. (A64) is evaluated as follows

|{R(θ, φ, ω), ρ}|2

= 2[Tr{ρ2} + Tr{R(θ, φ, ω)†ρR(θ, φ, ω)ρ}] , (A65)

while the first term in Eq. (A65) is just the purity of the
quantum state ρ, i.e.,

Tr{ρ2} = |ρ|2 =
coshβλ

coshβλ+ 1
, (A66)

the second term in Eq. (A65) is evaluated as follows

Tr{R(θ, φ, ω)†ρR(θ, φ, ω)ρ} = Tr{ e i(ω/2)n̂·~σρ e−i(ω/2)n̂·~σρ}

=
1

4 cosh2 βλ
2

Tr{ e i(ω/2)n̂·~σ e−(1/2)βλσz e−i(ω/2)n̂·~σ e−(1/2)βλσz} =
1

4 cosh2(βλ/2)
Tr

{(

cos
ω

2
+ in̂ · ~σ sin

ω

2

)

×
(

cosh
βλ

2
− σz sinh

βλ

2

)(

cos
ω

2
− in̂ · ~σ sin

ω

2

)(

cosh
βλ

2
− σz sinh

βλ

2

)}

=
1

4 cosh2(βλ/2)
{[1 + cos θ2(1 − cosω) + cosω] coshβλ+ sin2 θ(1 − cosω)} . (A67)

Insert Eqs. (A66), (A67) into Eq. (A64), the DoS is readily calculated

S(O(3), ρ) =
1

4

(

3 +
1

coshβλ

)

. (A68)
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