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Abstract For Hawking radiation, treated as a tunneling process, the no-hair theorem of black hole together with
the law of energy conservation is utilized to postulate that the tunneling rate only depends on the external qualities
(e.g., the mass for the Schwarzschild black hole) and the energy of the radiated particle. This postulate is justified by
the WKB approximation for calculating the tunneling probability. Based on this postulate, a general formula for the
tunneling probability is derived without referring to the concrete form of black hole metric. This formula implies an
intrinsic correlation between the successive processes of the black hole radiation of two or more particles. It also suggests
a kind of entropy conservation and thus resolves the puzzle of black hole information loss in some sense.
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1 Introduction

Hawking discovered that the black hole radiation pos-

sesses an exactly thermal spectrum of temperature de-

pending on the surface gravity of the black hole.[1] Partic-

ularly, the radiation does not depend on the details of the

structure of the object that collapsed to form the black

hole. Thus, an initially pure quantum state will evolve

into a mixed thermal state as the black hole radiates. This

phenomenon, known as the paradox of black hole informa-

tion loss, obviously violates the quantum unitarity for the

closed system.

Since its appearing, many attempts[2] have been made

to resolve this paradox. In the previous investigations,

the radiation is always treated as possessing the thermal

spectrum and the space-time geometry is fixed. Recently,

based on the WKB approximation, the tunneling proba-

bility for the Hawking radiation was derived in the frame-

work of dynamical geometry. It turns out surprisingly

that the radiation spectrum is not exactly thermal.[3] For

this reason, it is found in Ref. [4] that the successively

radiated two particles are correlated, and thus no infor-

mation is lost in the radiation.[4] Actually, by using the

same approach as that in Ref. [3], the Hawking radiation

spectra of various black holes have been obtained.[5−10]

These results verify the correlation between the succes-

sive radiations and the conservation of the information in

the radiation.[11−12] We find that the chain rule for the

probability is essential for the information conservation in

the black hole radiation, and we verify case by case that

the chain rule indeed holds for various Hawking radiations
coincidentally.

We observe that the above mentioned coincidence can
be exactly explained by the No-hair theorem of black hole
together with the law of energy conservation. In fact,
from our “one hair” postulate based on the No-hair the-
orem and the law of energy conservation, we are able to
derive a general form of the tunneling probability of Hawk-
ing radiation without resorting to the details of the black
hole, such as its geometric structure. We are thus able to
prove that for the tunneling probability obtained from the
WKB approximation, the chain rule is satisfied automat-
ically and the above mentioned coincidence is of physical
necessity. It should be clear that our results demonstrate
the advantage of treating the black hole radiation as a
tunneling process.

This letter is organized as follows. In Sec. 2, our pos-
tulate is stated based on the No-hair Theorem. In Sec. 3,
a general formula for the tunneling probability is derived
from the postulate. In Sec. 4, the tunneling rate for the
Schwarzschild black hole is obtained without referring to
its geometry. In Sec. 5, the case by case verification of our
postulate is given for various black hole radiations.

2 “One Hair” for Hawking Radiation as

Tunneling

It is well known that all black hole solutions of the
Einstein–Maxwell equations of gravitation and electro-
magnetism in general relativity can be completely char-
acterized by only three externally observable classical pa-
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rameters: mass, electric charge, and angular momentum.
This result is referred to as No-hair theorem of steady
black hole. For our purpose, we generalize this theorem
for the dynamic black hole as follows: the tunneling prob-
ability for the Hawking radiation only depends on the fi-
nal state of the steady black hole and the total energy
ET = E1 + E2 + · · · + EN after simultaneously radiat-
ing N particles with the energies E1, E2, . . . , EN . Here,
there is only “one hair” quantity ET and the tunneling
probability has nothing to do with its partition.

To investigate the above “one hair” postulate, let us
consider the two processes in the Hawking radiation, il-
lustrated in Fig. 1:

(i) The black hole radiates a single particle with the
energy ET, as illustrated in Fig. 1(a). The mass of the
black hole reduces to M − ET. The tunneling probabil-
ity is defined as p({ET}; M). The black hole can also
simultaneously radiate two particles with the energies E1

and E2 respectively. The probability of this process is
denoted by p({E1, E2}; M). Based on the No-hair Theo-
rem of black hole and the law of energy conservation, we
postulate the one-hair Theorem for black hole radiation:
if ET = E1 + E2, then

p({E1, E2}; M) = p({ET }; M) . (1)

Actually, we can imagine that after the Hawking ra-
diation the radiated particle immediately splits into two
particles with the energy Ex and ET − Ex respectively,
and in the split no particular energy partition between
the two particles is preferred. The one-hair Theorem sim-
ply means that all the splits satisfying the law of energy
conservation possess the same tunneling probability.

(ii) The black hole firstly radiates a particle with the
energy E1 and then radiates another particle with the en-
ergy E2 = ET − E1, as illustrated in Fig. 1(b). The mass
of the black hole also reduces to M − ET. The tunneling
probability for this process is

p({E1 : E2}; M) = p({E1}; M)p({E2}; M − E1) ,

where the conditional probability p({E2}; M−E1) reflects
the fact that the mass of the black hole reduces to M −E1

after it radiates the particle of energy E1.
We remark here that, the first radiated particle is cor-

related to the second one, since the conditional tunneling
probability of the second one actually depends on the en-
ergy E1 of the first one. Most recently, this correlation is
employed to account for the information loss in the black
hole radiation process.[4,11−12]

In the following we only consider the steady state of the
black hole. It will take a longer time to reach the steady
state than the relaxation time of each radiation. In this
case, the one-hair Theorem for black hole radiation can
be re-expressed as p({E1, E2}; M) = p({E1 : E2}; M) or

p({E1, E2}; M) = p({E1}; M)p({E2}; M − E1). (2)

Here, as only the steady solutions of the black hole radi-
ation are concerned, we have identified the two processes

of simultaneously and successively radiating two particles.
For the multi-particle case, we can recover the chain rule
as

p({E1 : E2 : · · · : EN}; M) =
∏

p

p
(

Ep; M −

p−1
∑

j=1

Ej

)

. (3)

based on this two-particle case. Thus, to verify the chain
rule for various Hawking radiation, we need only to prove
the postulation in Eq. (2).

To justify the above observation, let us briefly review
some results derived from the dynamic calculation based
on the generalized WKB approximation. In Ref. [3], the
tunneling probability for a particle out of the black hole
is defined as

p ∼ e−2ImS , (4)

where S is the action for an s-wave outgoing positive par-
ticle. The exact form of the imaginary part of the action
reads

ImS = Im

∫ M−E

M

∫ rout

rin

dr

ṙ
dH . (5)

Here, the Hamiltonian H is defined through the radial null
geodesics equation, and particularly H = M − E′ for the
Schwarzschild black hole. It is easily seen that ImS natu-
rally satisfies the above stated postulate. Then it can be
concluded that the conservation of information will not be
broken if Hawking radiation is treated as tunneling pro-
cess, as has been proved in many references.[4,11−12]

Fig. 1 Radiation. (a) The black hole radiates a parti-
cle with energy ET . (b) The black hole radiates firstly a
particle with energy E1 and successively another particle
with energy E2.

3 Energy Dependence of Non Thermal
Hawking Radiation

In this section, we will present a derivation of the gen-
eral form of the tunneling probability based only on the
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“one hair” postulate. Without losing the generality, we
assume

p({E}; M) = exp[f({E}; M)] ,

where f({E}; M) is actually the tunneling entropy for the
black hole radiation. It then follows from Eq. (2) that

f({ET }; M) = f({E1}; M) + f({E2}; M − E1) . (6)

Substituting the Taylor expansion form f({ω}; M) =
∑

n=0 An(M)ωn of the function f into this equation and
comparing the coefficients of the terms with the same or-
ders of E2, we obtain the following system of recursive
equations

0 = A0(M − E1) ,
∑

n=1

An(M)C1
nEn−1

1 = A1(M − E1) ,

∑

n=2

An(M)C2
nEn−2

1 = A2(M − E1) ,

···
∑

n=m

An(M)Cm
n En−m

1 = Am(M − E1, ) ,

∑

n=m+1

An(M)Cm+1
n E

n−(m+1)
1 = Am+1(M − E1) ,

···

Differentiating the left hand right hand sides of the above
equations with respect to E1 then results in the equation

(m + 1)Am+1(M − E1) =
dAm(M − E1)

dE1

= −
dAm(M − E1)

dM
,

for each m. Thus we have the recursion formula

Am(M) = −
1

m

d

dM
Am−1(M)

=
(−1)m−1

m!

dm−1

dMm−1
A1(M) ,

and the black hole entropy can be rewritten as

f({E}; M) =
∑

m=1

(−1)m−1

m!

dm−1

dMm−1
A1(M)Em . (7)

Define the entropy G(M) for the black hole radiation
through

A1(M) = −
dG(M)

dM
,

the black hole entropy then reads

f({E}; M) = G(M − E) − G(M) . (8)

This is the main result of this paper. Obviously, G(M) in
Eq. (8) is a conservation quantity. According to the above
result, after a black hole of mass M radiates a tunneling
particle with energy E, its entropy decrease is

S(E, M) = − ln p({E}; M) = G(M) − G(M − E) . (9)

In deriving the above result, it is tacitly assumed that
the black hole does not carry charge. For charged black
hole a similar result can easily be obtained by the above
method. In fact, when a charged black hole with charge Q
radiates a particle with charge q, the tunneling probability
can be derived as

S(E, q; M, Q) = G(M, Q) − G(M − E, Q − q) . (10)

4 Tunneling Probability for Schwarzschild
Black Hole

In this section, we will derive the tunneling probability
for the Hawking radiation of the Schwarzschild black hole
without referring to its dynamic geometry.

We assume that the entropy for black hole radiation is
corrected to the second order of the tunneling energy E,
namely

f({E}; M) = A(M) + B(M)E + C(M)E2 , (11)

where A(M) B(M), and C(M) are mass-dependent func-
tions to be determined. Then Eq. (6) takes the form

A(M) + B(M)(E1 + E2) + C(M)(E1 + E2)
2

= A(M) + B(M)E1 + C(M)E2
1

+ A(M − E1) + B(M − E1)E2 + C(M − E1)E
2
2

gives the following equations about A(M), B(M), and
C(M):

A(M − E1) = 0 ,

B(M) − 2C(M)E1 = B(M − E1) ,

C(M) = C(M − E1) .

It then follows that C(M) = k and B(M) = ξ−2kM , and
the entropy of black hole radiation is obtained as

f({E}; M) = (ξ − 2kM)E + kE2 , (12)

where k and ξ are constants. If we take k = 4π and
ξ = 0, then we recover the well-known result by Parikh
and Wilczek:

f({E}; M) = 4π[(M − E)2 − M2] . (13)

We would like to emphasize again that, in obtaining the
above result, we only make the assumption that the en-
tropy of the black hole is a polynomial of the radiated
energy E, and the details of the dynamic geometry do not
come into the derivation. If the entropy is a polynomial
of E of degree 1, then we have f({E}; M) = ξE where
ξ is a constant independent of the mass M . Thus, the
conventional thermal spectrum p′(E, M) = exp(−8πEM)
does not satisfy Eq. (6) about the conditional probabil-
ity. In that case, G(M) = 4πM2 = A/4 is the usual
entropy for the Schwarzschild black hole, and is usually
called Bekenstein–Hawking entropy of black hole.

According to Ref. [4], the above spectrum function (13)
indicates that the two successively radiated particles are
actually correlated. Since Hawking radiation can carry
information through this correlation between the radiated
particles, the conservation of total information can be re-
stored by taking this correlation into account.
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5 Verification of One-Hair Postulate for

Other Black Holes

In this section, we will check the radiation spectra of
some well known black holes to see if they satisfy the one-
hair postulate expressed by Eq. (6).
(i) Reissner–Nordström Black Hole The tunneling
probability of a charged particle with energy E and charge
q for the Reissner–Nordström black hole has been obtained
in Ref. [5] as

p({E, q}; M, Q) =
exp[GRN(M − E, Q − q)]

exp[GRN(M, Q)]
, (14)

where

GRN(M, Q) = π(M +
√

M2 − Q2) .

Clearly, the radiation spectrum for the Reissner–
Nordström black hole is not thermal, and satisfies our
one-hair postulate.
(ii) Kerr Black Hole For the rotating black hole (Kerr
black hole), the tunneling probability is found in Ref. [6]
as

p({E}, M) = exp[GK(M − E) − GK(M)] , (15)

where

GK(M) = 2π(M2 + M
√

M2 − a2) .

Obviously, its spectrum structure is in accordance with
our one-hair postulate.
(iii) Kerr–Newman Black Hole For the Kerr–Newman
black hole, the tunneling probability for a particle with
charge q is obtained in Refs. [6–7] as

p({E, q}; M, Q) =
exp[GKN(M − E, Q − q)]

exp[GKN(M, Q)]
, (16)

where

GKN(M, Q) = π(M +
√

M2 − Q2 − a2)2 .

It also satisfies our postulate.

(iv) Quantum Corrected Hawking Radiation Last,
we consider the tunneling with quantum correction for
the Schwarzschild black hole. For the quantum corrected
Hawking radiation, the tunneling probability reads

p({E}; M) =
(

1 −
E

M

)2α

exp
[

8πE
(

M −
E

2

)]

= exp[G(M − E) − G(M)] , (17)

where
G(M) = 4πM2 + 2α lnM .

This tunneling probability still satisfies our postulate, thus
the information conservation is quite natural. For a de-
tailed discussion about the information conservation, one
can refer to the Refs. [11–12].

6 Summary

In this letter, we suggest the one-hair Postulate to de-
scribe Hawking radiation as tunneling process based on
the No-hair theorem and the energy conservation law.
This postulate for tunneling probability naturally leads to
the information conservation for the total system formed
by the radiated particles plus the remnant black hole. Es-
pecially, this postulate is used to determine the tunnel-
ing rate by the information (probability) theory method
rather than the dynamic geometry method. Finally, some
well known examples are presented to support the postu-
late. We expect the viewpoint developed in this letter will
shed light on the parabox of black hole information loss.

Authors’ notes: After we put the manuscript of this
work in arXiv with reference number 0907.2085 in 2009,
we found a paper [Phys. Rev. Lett. 107 (2011) 071302]
by S.L. Braunstein and M.K. Patra that was put as
arXiv:1102.2326 and reported the similar results in 2011.

Acknowledgments

We thank Li You and Zhan Xu for useful discussion.

References

[1] S.W. Hawking, Commun. Math. Phys. 43 (1975) 199;
[Erratum-ibid. 46 (1976) 206].

[2] S.W. Hawking, Phys. Rev. D 14 (1976) 2460; Y.
Aharonov, A. Casher, and S. Nussinov, Phys. Lett. B
191 (1987) 51; L.M. Krauss and F. Wilczek, Phys. Rev.
Lett. 62 (1989) 1221; J. Preskill, hep-th/9209058; G.T.
Horowitz and J. Maldacena, J. High Energy Phys. 02

(2004) 008; S.W. Hawking, Phys. Rev. D 72 (2005)
084013; S.L. Braunstein and A.K. Pati, Phys. Rev. Lett.
98 (2007) 080502; D.N. Page, Phys. Rev. Lett. 71 (1993)
3743; G.’t Hooft, Nucl. Phys. B 256 (1985) 727.

[3] M.K. Parikh and F. Wilczek, Phys. Rev. Lett. 85 (2000)
5042.

[4] B. Zhang, Q.Y. Cai, L. You, and M.S. Zhan, Phys. Lett.
B 675 (2009) 98; arXiv:0903.0893 [hep-th].

[5] J. Zhang and Z. Zhao, J. High Energy Phys. 10 (2005)
055.

[6] Q.Q. Jiang, S.Q. Wu, and X. Cai, Phys. Rev. D 73 (2006)
064003.

[7] J. Zhang and Z. Zhao, Phys. Lett. B 638 (2006) 110.

[8] M. Arzano, A.J.M. Medved, and E.C. Vagenas, J. High
Energy Phys. 0509 (2005) 037; [hep-th/0505266].

[9] R. Banerjee, B.R. Majhi, and S. Samanta, Phys. Rev. D
77 (2008) 124035.

[10] K. Nozari and S.H. Mehdipour, Class. Quantum Grav. 25
(2008) 175015.

[11] Y. Chen and K. Shao, arXiv:0905.0948 [hep-th].

[12] B. Zhang, Q.Y. Cai, L. You, and M.S. Zhan, arXiv:

0906.5033 [hep-th].


