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Dynamics of Optically Driven Exciton and Quantum Decoherence∗
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Abstract By using the normal ordering method, we study the state evolution of an optically driven excitons in a
quantum well immersed in a leaky cavity, which was introduced by Yu-Xi Liu et al. [Phys. Rev. A63 (2001) 033816]. The
influence of the external laser field on the quantum decoherence of a mesoscopically superposed state of the excitons is
investigated. Our result shows that, the classical field can compensate the energy dissipation of the excitons. Although
the decoherence rate of the excitonic Schrödinger cat state does not depend on the external field, the phase of the
decoherence factor can be well controlled by adjusting the amplitude of the external field as well as the detuning between
the field and the transition frequency of the atom.
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1 Introduction

One of the most profound features of quantum me-
chanics is the superposition principle, which plays a cen-
tral role in implementing of quantum information pro-
cessing (QIP),[1] such as quantum computation, quantum
cryptography, and quantum teleportation. The realization
of QIP has triggered intense study in various quantum sys-
tems including ion traps, cavity QED, nuclear magnetic
resonance, and quantum dots.

As is well known, within the quantum information
process preserving coherence is an essential requirement.
However, quantum coherence is not robust enough to be
exploited. In any measurement process the information’s
readout will lead to wave packet collapse, i.e., quantum
decoherence. On the other hand, due to the influence
of the environment,[2] the system’s coherence information
will be lost and the superposition of the system states
will evolve into a statistical mixture state. In fact there
are two distinct effects of the external world on the quan-
tum system: quantum dissipation[3,4] with energy loss and
quantum decoherence[5] without energy loss. Both the two
effects will reduce the efficiency of quantum computation,
and result in disentanglement in QIP.[6] It is obvious that
to overcome the obstacle caused by decoherence and to
control decoherence now become more urgent.

Some important progress has been made in the solid
state system[7,8] recently. The schemes to generate max-
imally entangled states for excitons in coupled quantum
dots have been proposed by using a classical laser field[9]

or a quantum laser field.[10] Besides, a quantum superpo-
sition of macroscopically distinct states[11] in a supercon-
ducting quantum interference device (SQUID) has been
demonstrated experimentally. These achievements have
manifested that the possibility of implement QIP in the

solid system becomes more promising than ever. In our
previous works,[12] the quantum decoherence of a meso-
scopically superposed state of the excitons in a quantum
well placed in a leaky cavity is investigated. The results
show that the coherence of the superposed states of the
system will undergo oscillating decay with time evolution.
Now, an immediately-following question is that how to
control the dynamical evolution and to suppress the deco-
herence of the system.

In this paper, with the motivation to continue our
previous work, we study the dynamical evolution of an
optically driven exciton in the quantum well placed in a
leaky cavity. The effect of the external continuous wave
(c.w.) field on the state evolution and the quantum de-
coherence of the mesoscopically superposed states of the
exciton is studied by using the normal ordering method
(NOM).[13,14] Our results show that the c.w. field does
not change the decoherence time. However, the phase of
the decoherence factor can be controlled by adjusting the
amplitude of the field and the detuning between the field
and the transition frequency of the two-level atoms. Such
a result seems to be important in quantum computation
because in a quantum computation the phase of decoher-
ence factor plays more crucial role.[6]

The paper is organized as follows. In Sec. 2, we give
a model of the optically driven excitons in the quantum
well placed in a leaky cavity. In Sec. 3, the dynamical
evolution of the whole system is analytically calculated by
directly solving the Schrödinger equation with the help of
the normal ordering method. In addition, the influence
of the external pumping field on the mean population of
the exciton system is also studied. In Sec. 4, we study
the decoherence behavior of the optically driven exciton
system. The effect of the external field on the decoherence
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process of the exciton is investigated carefully. Finally, we
will give some conclusions.

2 Model of an Optically Driven Exciton in a
Leaky Cavity
In our previous work,[12,15] we considered a quantum

well (or crystal slab) placed within a leaky Fabry–Perot
cavity.[16] The quantum well lies in the center of the cavity.
It contains an ideal cubic lattice with N lattice sites and
is so thin that it has only one layer. We assume that N
identical lattice two-level atoms (or molecules) distribute
into these lattice sites. All these particles have equivalent
mode positions, so they have the same coupling constant
with the cavity modes. It is also assumed that the di-
rection of the dipole moment for the two-level atoms and
wave vectors of the cavity fields are perpendicular to the
surface of the slab. In addition, when a continuous wave
(c.w.) pumping field with frequency ω is applied on the
quantum well, the total Hamiltonian under the rotating
wave approximation becomes, with h̄ = 1,

H = ΩSz +
∑

j

ωjb
†
jbj +

∑
j

gj(bjS+ + b†jS−)

+ κ( e−iωtS+ + e iωtS−) (1)
with the collective operators

SZ =
N∑

n=1

sz(n), S± =
N∑

n=1

s±(n) , (2)

where sz(n) = (1/2)(|en〉〈en|−|gn〉〈gn|), s+(n) = |en〉〈gn|
and s−(n) = |gn〉〈en| are quasi-spin operators of the n-th
atom. Here |en〉 and |gn〉 denote the excited state and the
ground state of the n-th atom, and Ω is a transition fre-
quency of the isolated atom. Operators b†j(bj) are creation
(annihilation) operators of the field modes, which are la-
beled by continuous index j with mode frequency ωj . The
Rabi frequency κ denotes the coupling between the atoms
and the c.w. pumping field. The coupling constant gj be-
tween the molecules and the cavity fields takes a simple
form which is proportional to a Lorentzian

gj =
ηΓ√

(ωj − Ω)2 + Γ2
, (3)

where η depends on the atomic dipole and Γ is the de-
cay rate of a quasi-mode of the cavity. In this paper we
restrict our investigation to the Jaynes–Cummings situa-
tion, where only one quasi-mode of the cavity is involved,
and it is resonant with the transition frequency of the
isolated atom Ω.[17] In the case of low density of the ex-
citation with the attractive exciton-exciton collisions due

to the bi-exciton effect[15] neglected, the collective behav-
ior of the atoms can be described by a bosonic exciton.[18]

With this so-called bosonic approximation we can make
the replacement: a = S−/

√
N and a† = S+/

√
N with

[a, a†] = 1. Then the Hamiltonian (1) becomes

H = Ωa†a+
∑

j

ωjb
†
jbj +

∑
j

g(ωj)(b
†
ja+ a†bj)

+R( e−iωta† + e iωta) (4)

with g(ωj) =
√
Ngj and R =

√
Nκ. We note that our

model of the optically driven excitons plus the cavity fields
now becomes a standard driven damped oscillator system.
We will solve the time evolution of the coupled system de-
scribed by the Hamiltonian of Eq. (4) by directly solving
the Schrödinger equation with the help of the NOM.

3 Exact Solution in Terms of NOM
In this section we calculate the state evolution of the

driven excitons immersed in a lossy cavity by using NOM,
which was first introduced by Louisell[13] to study the dy-
namic evolution of a driven oscillator as well as that of
two weakly coupled oscillators without dissipation. Here
we follow our previous works[14] to study the dynamical
evolution of the optically driven exciton immersed in a
leaky cavity.

The state vector of the whole system obeys the
Schrödinger equation which has a solution of the form
|ψ(t)〉 = U(t)|ψ(0)〉, where the time-evolution operator
U(t) satisfies i∂tU(t) = HU(t) with the initial condition
U(0) = 1. We assume that the evolution operator has its
normal order form U(t) = U (n)(t). Because the normal
form of any operator is unique, one can establish the one-
to-one corresponding relationship between the normal or-
dered evolution operator U (n)(t) and an ordinary function
Ū (n)(t), with Ū (n)(t) = 〈α, {βj}|U (n)(t)|{βj}, α〉. Here
|{βj}〉 =

∏
j |βj〉 denotes multimode coherent state of the

radiation field. Such a corresponding relation defines a
map N−1,

N−1 : U (n)(t) → Ū (n)(t) . (5)

On the other hand, we can also define the inverse trans-
formation N ,

N : Ū (n)(t) → U (n)(t) = U(t) . (6)

Therefore, one can write down the Schrödinger equation
of U(t) in the normal ordering form. Then implementing
the operator N−1, one can get a c-number equation of
Ū (n),

i∂tŪ
(n) =

[
Ωα∗(α+ ∂α∗) +

∑
j

ωjβ
∗
j (βj + ∂β∗

j
) +

∑
j

g(ωj)β∗j (α+ ∂α∗) +
∑

j

g(ωj)α∗(βj + ∂β∗
j
)

+R e−iωtα∗ +R e iωt(α+ ∂α∗)
]
Ū (n) , (7)

where ∂α∗ = ∂/∂α∗, and ∂β∗
j

= ∂/∂β∗j . We assume that Ū (n) takes the form

Ū (n) = exp
[
A+Bα+ Cα∗ +Dα∗α+

∑
j

Bjβ
∗
j βj +

∑
j,j′

′
Bj,j′β

∗
j βj′
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+
∑

j

Cjβ
∗
jα+

∑
j

Djα
∗βj +

∑
j

Ejβ
∗
j +

∑
j

Fjβj

]
. (8)

Here, the prime in
∑′ denotes sum over index “ j ” and “ j ” with the condition j 6= j′. By substituting Eq. (8)

into Eq. (7), we get equations which the time-dependent coefficients obey (for the details of calculations, please see
Appendix). In this paper we restrict our study to zero temperature situation for the fields where no background
radiation is involved in our consideration. At zero temperature the radiation field of the present model is in its pure
vacuum state |{0j}〉 =

∏
j |0j〉. Thus only the coefficients A, B, C, D, Cj , and Ej contribute to the state evolution of

the whole system. We can write the explicit expressions of these coefficients as

D(t) = u(t) e−iΩt − 1 , (9a)

C(t) = B(t) e−iωt = w(t) e−iΩt , (9b)

A(t) = −iR
∫ t

0

dt′w(t′) e iδt′ , (9c)

Cj(t) = uj(t) e−iΩt , (9d)

Ej(t) = vj(t) e−iΩt , (9e)

where δ = ω − Ω is the detuning between the c.w. field and the transition frequency of the two-level atom. The
time-dependent functions in the above equations are

u(t) =
[
cos(Θt) +

Γ
2Θ

sin(Θt)
]
e−(Γ/2)t , (10)

uj(t) = −g(ωj)
2

(
1− iΓ

2Θ

) e iΘt e−Γt/2 − e−i(ωj−Ω)t

ωj − Ω + Θ + iΓ/2
− g(ωj)

2

(
1 +

iΓ
2Θ

) e−iΘt e−Γt/2 − e−i(ωj−Ω)t

ωj − Ω−Θ + iΓ/2
, (11)

w(t) = −R
2

(
1− iΓ

2Θ

) e iΘt e−Γt/2 − e−iδt

δ + Θ + iΓ/2
− R

2

(
1 +

iΓ
2Θ

) e−iΘt e−Γt/2 − e−iδt

δ −Θ + iΓ/2
, (12)

where Θ =
√
MΓ− (Γ/2)2. The coefficients A(t), and vj(t) can also be solved. Here we do not give the explicit

expressions, for brevity.

Fig. 1 The mean number of excitons as the function of time with a given set of parameters: h̄Γ = 0.05 meV, |α|2 = 10,
h̄M = 20 meV, h̄δ = 0.1 meV. (a) No pumping case: h̄R = 0 meV, (b) h̄R = 5 meV, (c) h̄R = 10 meV, (d) h̄R = 20 meV.

If, as an example, the initial state of the total system is |ψ(0)〉 = |α〉 ⊗ |{0j}〉, then at any time t the total system
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will evolve into
|ψ(t)〉 = |αu(t) e−iΩt + w(t) e−iΩt〉 ⊗ |{αuj(t) e−iΩt + vj(t) e−iΩt}〉 , (13)

from which we can determine the mean number of excitons at time t as

N(t) = |α|2|u(t)|2 + |w(t)|2 + αu(t)w∗(t) + c.c. , (14)

where |α|2 is the initial mean number of excitons. In Fig. 1, we plot the mean number of excitons as a function of
time. From Fig. 1(a) we find that, without pumping, the mean number of excitons in the cavity oscillates periodically,
and decays to zero. However, after applying the pump field (Figs. 1(b) ∼ 1(d)), the oscillation amplitude of the mean
number becomes more and more larger with the increase of the Rabi frequency, and tends to a non-zero value. We
find that the c.w. field compensates the dissipation of excitons due to the damping of cavity.

4 Quantum Decoherence of the Optically Driven Exciton System
If we consider a superposition of distinct coherent states as Schrödinger’s cat, i.e., the excitons are initially in the

state C1|α1〉+C2|α2〉, where |α1〉 and |α2〉 are coherent states of the excitons, and the cavity fields are in the vacuum
states |{0j}〉. Then the state vector at any time t is

|Ψ(t)〉 = C1 exp[(A+Bα1)/2− c.c.]|α1u e−iΩt + w e−iΩt〉 ⊗ |{α1uj e−iΩt + vj e−iΩt}〉

+ C2 exp[(A+Bα2)/2− c.c.]|α2u e−iΩt + w e−iΩt〉 ⊗ |{α2uj e−iΩt + vj e−iΩt}〉 , (15)

where we have used the following “sum rules”,

|α1|2 =
∑

j

|α1uj + vj |2 + |α1u+ w|2 + (A+Bα1 + c.c.) , (16a)

|α2|2 =
∑

j

|α2uj + vj |2 + |α2u+ w|2 + (A+Bα2 + c.c.) , (16b)

and

〈α1|α2〉 = exp[−(Bα1 − c.c.)/2] exp[(Bα2 − c.c.)/2]〈{α1uj e−iΩt + vj e−Ωt}|{α2uj e−iΩt + vj e−iΩt}〉

× 〈α1u e−iΩt + w e−iΩt|α2u e−iΩt + w e−iΩt〉 , (16c)

under the consideration of normalization condition of the wave function, equation (15) is one of the main results of
our study, from which we see that, due to the field’s fluctuation and the back-action of system on the fields, the state
vector evolved from factorized initial state becomes fully entangled. However under certain conditions the total state
vector can be partially factorized.[19] In the following context of this paper we will investigate the effect of the external
c.w. field on the quantum decoherence of the superposition of the excitons.

We can calculate the reduced density matrix of the exciton system ρ(t) = TrR{|Ψ(t)〉〈Ψ(t)|}. Substituting Eq. (15)
into ρ(t), we get the decoherence factor, which is defined as the coefficient of the off-diagonal element of the reduced
density matrix,

F (t) = exp
[(
−1

2
|α1|2 −

1
2
|α2|2 + α∗1α2

)
(1− |u(t)|2)

]
e(α1−α2)u(t)w∗(t)/2−c.c. , (17)

where we have used Eq. (16c) in deriving Eq. (17). The
explicit expressions of the time-dependent functions u(t)
and w(t) are given in Eq. (10), and Eq. (12), respectively.
We consider that α1 = α, and α2 = α e i∆ϕ, where ∆ϕ is
the phase shift of the initial superposed states. The char-
acteristic time τd of the decoherence of the superposition
state is determined by the short time behavior of |F (t)|,
that is Γt,Θt � 1. Within this time scale the norm of
decoherence factor can be simplified as

|F (t)| = exp[−2|α|2 sin2(∆ϕ/2)Γt] . (18)

Then the characteristic time is determined as

τ−1
d = 2|α|2Γ sin2(∆ϕ/2) , (19)

where |α|2 is the mean number of the excitons. We can
define the “distance” D = |α1 − α2| = 2|α| sin(∆ϕ/2)

between the two superposed states of the exciton. Substi-
tuting D into Eq. (19), we get the characteristic time of
decoherence τd = 2τp/D2, where τp = 1/Γ is the life time
of the quasimode. Our result shows that the decoherence
time of the exciton is determined by the distance of their
initial superposed states and the decay rate of the quasi-
mode. The external c.w. laser field does not change the
decoherence time of the exciton. One can suppress the de-
coherence speed of the exciton by adjusting the distance
of the initial superposition of the exciton.[12]

For a special case ∆ϕ = π, i.e., when the system is pre-
pared initially in odd or even Schrödinger cat states[20−23]

of the exciton. Then the decoherence factor is

F (t) = exp[−|α|2(1− |u(t)|2)] e iφ(t) , (20)
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where we have introduced the phase of the decoherence
factor in Eq. (20),

φ(t) = Im [αu(t)w(t)∗ − c.c.] , (21)

where Im [. . .] represents to take imaginary part. We find
that the phase of the decoherence factor depends on the
external field and can be controlled artificially by ad-
justing field detuning δ and Rabi frequency R. How-
ever, as mentioned above, the decoherence rate is de-
termined by the norm of F (t). The time evolution of
|F (t)| = exp[−|α|2(1 − |u(t)|2)] is plotted in Fig. 2. We
find that the decoherence rate strongly depends on the
initial mean number of excitons. For the case |α|2 = 3.1
(solid line), the coherent information of the Schrödinger
cat state decays more rapidly than that of small mean
number case |α|2 = 0.01 (dotted line).

Fig. 2 Time evolution of |F (t)| when the excitons are
initially in the even-odd Schrödinger cat state. h̄Γ =
0.05 meV, h̄M = 20 meV. Solid line: |α|2 = 3.1; dotted
line: |α|2 = 0.01. Inset: detail for |α|2 = 0.01.[12]

5 Conclusions
We have studied the dynamical evolution of the super-

position of the mesoscopically distinct quantum state in a
system of an optically-driven exciton in a quasimode cav-
ity. By utilizing normal ordering technique, the explicit
expression of state vector at any time is obtained in the
case of no background radiation. The influence of c.w.
field on the mean number of excitons in the lossy cavity
is also studied. We find that the field compensates the
loss of population of excitons. By adjusting the external
parameters we can obtain different value of mean number
of excitons at the long-time limit.

By solving the explicit form of the decoherence factor,
we investigate the decoherence behavior of the exciton sys-
tem and find that the decoherence rate of the exciton does
not depend on the c.w. laser field. However the phase of
the decoherence rate can be well controlled by adjusting
the amplitude of the external field as well as the detun-
ing between the field and the transition frequency of the
atom.
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Appendix: Normal Ordering Method

In this appendix, we will give the equations of the time-
dependent coefficients and the formal solution of the equa-
tions. By substituting Eq. (8) into Eq. (7), we have

Ȧ = −iR e iωtC , (A1a)

Ḃ = −iR e iωt(1 +D) , (A1b)

Ċ = −iΩC − i
∑

j

g(ωj)Ej − iR e−iωt , (A1c)

Ḋ = −iΩ(1 +D)− i
∑

j

g(ωj)Cj , (A1d)

Ėj = −iωjEj − ig(ωj)C , (A1e)

Ċj = −iωjCj − ig(ωj)(1 +D) . (A1f)

By solving Eqs. (A1), we get formal solutions of these
time-dependent coefficients as Eqs. (9). We have intro-
duced four new functions

u(t) = L−1{ũ[s]} , (A2a)

uj(t) = L−1
{ −ig(ωj)ũ[s]
s+ i(ωj − Ω)

}
, (A2b)

w(t) = L−1
{−iRũ[s]
s+ iδ

}
, (A2c)

vj(t) = L−1
{ −ig(ωj)w̃[s]
s+ i(ωj − Ω)

}
, (A2d)

where L−1 denotes the inverse Laplace transformation,
and ũ[s] = 1/(s+ K̃[s]). Now we need to determine
the explicit form of the kernel function K(t − t′) =∑

j |g(ωj)|2 e−i(ωj−Ω)(t−t′), and further K̃[s], the Laplace
transformation of K(t). As the standard treatment[12] we
firstly change the sum

∑
j in K(t− t′) into the integration

(L/πc)
∫∞
0

dωj , where L is the length of the cavity and c

is the speed of the light in the vacuum,[24] i.e.,

K(t− t′) =
η2Γ2NL

πc

∫ ∞

0

e−i(ωj−Ω)(t−t′)

(ωj − Ω)2 + Γ2
dωj . (A3)

If we assume that Ω is much larger than all other quanti-
ties of the dimension of frequency and Γ is small quantity,
then we may adopt to the standard approximation of ex-
tending the lower limit of the integral Eq. (A3) to −∞.
By integrating Eq. (A3) we get

K(t− t′) = MΓ e−Γ|t−t′| (A4)

with M = Nη2L/c. As long as the kernel function is de-
termined, one can solve time-dependent functions defined
in Eqs. (A2) with the help of the Laplace transformation
of K(t− t′).
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