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Abstract By using a two-mode description, we show that there exist the multistability, phase transition and associated
critical fluctuations in the macroscopic tunnelling process between the halves of a double-well trap containing a Bose—
Einstein condensate. The phase transition that two of the triple stable states and an unstable state merge into one stable
state or a reverse process takes place whenever the ratio of the mean field energy per particle to the tunnelling energy
goes across a critical value of order one. The critical fluctuation phenomenon corresponds to squeezed states for the
phase difference between the two wells accompanying with large fluctuations of atom numbers.
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Over the last few years, there has been consider-
able interest in the subjects related to the macroscopic
tunnelling processes between the halves of a double-
well trap containing a Bose-Einstein condensate (BEC).
Here we only mention a few ones closely related to the
topic concerned in the present paper, for instance, ex-
perimentally realized squeezed states,!! the scheme for
demonstrating nonlinear Josephson-type oscillations of a
driven, two-component BEC,[?! coherent oscillations con-
cerning Josephson effects, m oscillations, and macroscopic
quantum self-trapping.®*] Javanainen and Ivanov[®! have
claimed that these studiesl2~% are based on essentially
classical models. On the other hand, the fluctuations of
atom numbers and phases have been intensively inves-
tigated quantum-mechanically mainly by two seemingly
quite different approaches: two-mode approximation®=7]
and the one based on taking atom number and phase dif-
ference as conjugate quantum variables.#~1% The corre-
sponding investigations in an array of traps containing
BEC have also been carried out recently.! =6 Although
extensively studied, there still exist some important open
issues in the the macroscopic tunnelling processes between
the halves of a double-well trap containing a BEC. Some of
these open issues are that i) the fluctuations of atom num-
ber and phase difference obtained by the above-mentioned
two approaches seem to show large difference;®— 1 ii)
there exists no bridge to connect the strong and weak
tunnelling regimes yet;["!] iii) how to relate the essen-
tially classical models[®*
mechanical description in dealing with the fluctuations. In
this paper, we shall solve these three important issues by
providing a united approach. What is more important,
we shall show that the previous studies have missed the

I'and the corresponding quantum-

phenomena of the multistability, phase transition and as-
sociated critical fluctuations in the macroscopic tunnelling
processes between the halves of a double-well trap con-
taining a BEC. The critical fluctuation phenomenon cor-
responds to the squeezed states for the phase difference
between the two wells with extremely large fluctuation of
atom numbers.

We consider a model system of many-atom ground
state of Bose-Einstein condensate in a double-well
potential.['=712=17] In this system, N bosonic atoms are
confined by an infinite harmonic potential that is divided
into left and right wells by a barrier that can be raised
and lowered arbitrarily. Making a simple two-mode ap-
proximation, considering only the lowest energy states,
the creation and annihilation operators (&L r and a, g re-
spectively) for atoms localized in the ground state of ei-
ther the left or the right potential well can be constructed.
Neglecting terms that depend only on the total conserved
particle number N, the Hamiltonian for the system can
be written!!] as

ﬁ:é(m—mwg

5 (7, +7%) +y(alas +aka,), (1)

where 7, r = @, xQ, &, the total conserved particle num-
ber operator N = A, + fig, g = 47Tasch2/m is the mean-
field energy constant (as. is the s-wave scattering length).
The term in v describes tunnelling between wells, whereas
the term in g3, which depends on the number of atoms
within each wells, describes the mean-field energy due to
interactions between atoms in the same well. The term in
A = (Er, — ER)/h describes the energy difference of the
ground states in the left and right wells. The coefficients
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~v and (3 are determined from integrals over single-particle

wave functions.[!-]

Introducing phase operators gf)L, r by the relation!t9—22!

exp(iQASL)R) = (N r+ 1)_1/2&L)R or

dL,R = eXP(iQBL,R) V /fLL,R ’ (2)
where we have made use of the fact that a, zF (i, z) =

F(fy r+ 1)a, r. The phase and atom number operators
satisfy the commutative relations

[ sy brn) =1. (3)

But phase operators thus introduced suffer from the well-
known non-Hermitian problem?—22] that

(exp(ids,n))! exp(idy,n) = 1 - 0)(0] # 1

although exp(ig, »)(exp(id, »))T = 1. However, closing
inspection of this problem, we realize that this problem
is in fact avoidable if we focus on system’s states with
ny.r 7 0, which will be assumed to be so hereafter. Let
n =n; and ¢3 = ¢3L — qASR denote the left well’s atom num-
ber operator and the phase difference between the left
and right wells respectively. Utilizing iy = N — 7, and
the total atom number N = N (the conserved operator N
only takes a unique eigenvalue N and hence we need not
consider its operator characteristic), we can, after omit-
ting the unimportant conserved quantity N(A + gSN)/2,
rewrite the Hamiltonian (1) as follows:

H = Ai—gBi(N—n)+v(/(N — i) exp(id)+h.c.), (4)

where the left well’s atom number operator n and the
phase-difference operator QAS satisfy the commutative rela-
tion

[, 9] =1i. ()
Equations (4) and (5) are the fully quantum-mechanical
model giving the united description for investigating the
various problems in a Bose—Einstein condensate in a
double-well potential, particularly those relevant to the
phase coherence. In particular, we shall demonstrate that
all the previous models, either essentially classical or the
fully quantum-mechanical ones, dealing with this systems
can be derived from these equations under some approxi-
mations.

Suppose that the system can be described by a two-
mode coherent state |¥) = |a.,ar). characterized by
two complex parameters a;, = /nexp(i¢,) and a =
VN —n exp(i¢yr), we can derive from Hamiltonian for-
malism (4) for the equations of motion for the mean atom
number n = (¥|n|¥) in the left well (as well as the mean
atom number N-n in the right well) and phase difference
¢ = (U|@|¥) between the two wells as follows (obtained
by taking average operations to the Heisenberg equation

of motion dfl/dt = i[I:I, A] for A = and ¢ respectively),
oM do_ oM .
dt 99’ dt  on’

H="Ho+ An —gBn(N —n) + 2yy/n(N —n)cos¢, (7)
where H = (¥|H|¥), and Hy = N(A + gBN)/2 is con-
served quantity and can be omitted without loss of gener-
ality. The explicit form of equation (6) reads

% = 2yy/n(N =) sing, (8a)
do _ _N-2n
1 = A 9B(N —2n) +7 R cos¢. (8b)

These are nonlinear versions of the usual Josephson-
junction equations!?! and are nearly identical with those
describing the double-well tunnelling problem in the same
system.!34] Raghavan et al. have investigated Joseph-
son effects, 7 oscillations and macroscopic quantum self-
trapping for similar system.!3] However, no one, to the best
of our knowledge, seems to have so far noticed the impor-
tant phenomena of multistability and phase transition in
the macroscopic tunnelling process between the halves of
a double-well trap containing a Bose-Einstein condensate,
which we now turn to investigate.

The multistability and phase transition in the macro-
scopic tunmnelling process are clearly seen from Fig. 1. Let
us describe their main features. First of all, there are two
kinds of evolution pattern for atom number n (N —n) in
the left (right) well and phase difference between the two
wells. They are i) stable and unstable steady states (fixed
points in the phase diagrams) denoting no tunnelling at
all although tunnelling rate is non-zero; ii) periodic tun-
nelling processes where the tunnelling amplitude can be
very large, i.e., macroscopic quantum tunnelling, even for
small tunnelling rate . Secondly, the phase transition
takes place when an “order” parameter €| = |gBN/(27)|
characterizes the relative magnitude of the mean-field en-
ergy per particle and the tunnelling energy goes across
the critical parameter £, of order one. In other words, one
of the three stable fixed point remains while the unique
unstable fixed point and the two of the three stable fixed
points for |¢| > &, merge into one stable fixed point when
|€] goes from below to above the critical value &.. There-
fore the phase transition corresponds to the sudden struc-
tural change in n — ¢ phase diagrams when the “order”
parameter |[£| goes across its critical value &.. Thirdly,
there exist three stable and one unstable fixed points when
|€] > &.,whereas there exist two stable fixed points and no
unstable one otherwise. The concrete value of the critical
parameter depends on the parameter 6 = A/(2v) corre-
sponding to the ratio of the ground energy difference of the
two wells to the tunnelling rate. When [{| > &, the two
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of the three stable fixed points (i.e. the two stable fixed
points at ¢ = 0 in the lower phase diagrams of Fig. 1) are
symmetric about n = N/2 if the right and left wells are
identical with each other (§ = 0) and they are asymmetric
if the two wells are different from each other (6 # 0).

Fig. 1 The #/(27) contours for several values of pa-

rameters £ = gB8N/(2v) and § = A/(2y). The hori-
zontal and vertical axes denote reduced atom number
z = n/N and the phase difference ¢ respectively. The
four diagrams correspond to the parameter choices: a)
(£=10.6,0=0),b) ((£=18,0=0),c¢) ((£=1.1,6=0.1)
and d) (¢ =1.8,6 = 0.1). We have explicitly designated
the fixed points S, S+ and P in a) and b).

The fixed points and the critical parameter £, are eas-
ily shown to be determined by the equations sin ¢y = 0 or
¢o = 0,7 and

(1—20)(cos o —2&\/ @0 (1 — x9)) = 26/ xo(1 — o), (9)
where £ = ¢8N/(27), 6 = A/(27), and zg = no/N. We
find from this equation that the critical parameter £, = 1
for § =0, and &, > 1 for nonzero 0. For instance, & ~ 1.37
for 6 = 0.1. In the case 6 = 0 denoting identical ground
energy for two wells, we can easily obtain the explicit ex-
pressions for the fixed points. They are the fixed point P
whose ng = N/2 and ¢9 = 0 for £ > 0 and ¢y = 7 for
¢ <0, the fixed points Sy whose ng = N(1+£,/1 —¢72)/2
and ¢g = 0 for £ > 0 and ¢ = 7 for £ < 0, the fixed point
S whose ng = N/2 and ¢ = 7 for £ > 0 and ¢9 = 0 for
& < 0. The fixed point P is unstable for || > 1 and stable
for [¢] < 1, S is stable and exists for any &, and Sy are
stable but they exist only when |£| > 1.

Now let us illustrate that equations (4) and (5) pro-
vide a natural basis for describing quantum-mechanically

the atom number and phase statistics. For this goal,
we expand the left well’s atom number operator n and
the phase-difference operator (;3 in the Hamiltonian (4)
around one of the stable steady states discussed in the
paragraph where equation (9) locates, i.e., i = ng + 7
and ¢ = ¢o + ¢ with (no, ¢o) denoting one of the stable
steady states (note sin ¢g = 0) and [, ©] = i. Then after
neglecting the terms equal to or higher than the order of
O3, )2, 724, 3) and taking ) = —id/8n and 7 = 7 in

~

order to satisfy [7}, 1] = i, we can write Eq. (4) as follows:

2

fImH0+E1§n+E2n§n_%§_nz %n27
where Hy is a constant equal to (H — Ho) in Eq. (7)
evaluated at the fixed point considered, and the coef-
ficients in Eq. (10) are given in Eq. (11) for the fixed

point S and in Eq. (13) for the fixed points Sy respec-

(10)

tively. Following the same argument as the one in Ref. [5]
given in the paragraph immediately after its equation (16),
we can neglect Ej 5 terms in Eq. (10) in evaluating the
atom number and phase statistics. After this approxi-
mation, equation (10) is nothing but a harmonic oscil-
lator model and fluctuations of the atom number in the
left well and the phase difference are easily shown to be
An = (A¢)~' = (E;/Ec)Y* when the harmonic oscilla-
tor is in its ground state.[8]

In the case where 6 = 0 denoting identical ground en-
ergy for the two wells, if one considers the stable fixed
point S whose concrete expression is given after Eq. (9),
the coefficients in Eq. (10) can be calculated to be
98 5 _ 9BN? 298

Consequently, fluctuations of the atom number in the left

E =0, E,=

well and the phase difference in this case are given by
_l_ VN
A¢ V2(L+ g

where ¢ = gBN/(2v). The equation (16) of Ref. [5]
deals with the same system as ours, and has nearly iden-

An (12)

tical form as our equations (10) and (11) but with two
slightly different coefficients Ec = 2g8(1 + 0.5/¢|7!) and
E; = 0.5g8/|¢| in our notation. It is instructive to note
that the atom number fluctuation An o< N*/4 in the weak
tunnelling regime (|¢] > 1) just as is given by Leggett and
Sols,!®] whereas in the strong tunnelling regime (|¢| < 1),
the atom number fluctuation An o« /N just as is obtained

[7.11] Therefore the problem

by Javanainen and Wilkins.
quarrelled by them[®'") is naturally settled.

The previous studies on the atom number statistics
for the double-well system have failed to notice the mul-
tistability and the phase transition in this system when

the parameter |¢| goes across the critical parameter &..
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Consequently, no one has so far discussed the atom num-
ber and phase statistics around the stable fixed points S+
when |£] > &, which will be the subject of the present
paragraph. The critical parameter &. is unity in the case
where § = 0 denoting identical ground energy for the two
wells. In this case, we consider fluctuations around the
stable fixed points Si whose concrete expression is given
after Eq. (9), and obtain the coefficients in Eq. (10) as
follows:

By = 40.5g8N1—¢2, E,=—gB¢, (13a)
o _g,BNZ _ 2
=25 Be=-28-1. (13

Fluctuations of the atom number in the left well and the
phase difference in this case are given by

Sy IR /| S— (14
A¢ 20¢1(¢2 — 1)1/

where |{| = |g8N/(2y)] > 1. In the weak tunnelling
regime (|¢] > 1), the atom number fluctuation dn =
v/0.5/N is very small in large-N circumstances, which
demonstrates sub-Poissonian fluctuations and the atoms
in any one of the wells can be thought to be approximately
in a Fock state. Another interesting phenomenon is that
the atom numbers in both the wells display strong fluctu-

ations when the parameter || = |g8N/(27)| approaches
one from above. The atom number fluctuations have the
form An ~ /N/2[2(|¢] — 1)]71/* as |¢] — 1. This form
demonstrates the typical strong critical fluctuation phe-
nomena in phase transitions.?*:?4/ The corresponding “or-
der” parameter and critical index for atom number fluctu-
v.23:24] How-
ever, it should be emphasized that the critical fluctuation

ation in our case are |£| and 1/4 respectivel

phenomenon corresponds in fact to squeezed states for the
phase difference ¢ since the phase difference fluctuation
A ~ \/2/N[2(]¢] — 1)]*/* = 0 as the “order” parameter
& approaches unity from above.

The multistability and phase transition as well as
the critical fluctuation phenomenon (i.e. phase squeezed
states) in the macroscopic tunnelling in a double-well trap
containing a Bose-Einstein condensate (BEC) are well
within the reach of nowadays BEC-related technology.
As a matter of fact, the recent experiment by Kasevich’s
group!!! has already reached the strong tunneling regime
and the parameter £ = g8N/(27) in that experiment can
at least reach as low as 1.5 as given in the caption of its
Fig. 1D.Il We therefore believe that one should be able
to discover the new phenomena investigated here with the
same apparatus as in that experiment.
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