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1 Introduction

Quantum wells (QWs) embedded in semiconductor mi-

crocavity structures have been the subject of extensive

theoretical and experimental investigations. We know

that the excitons play a fundamental role in the optical

properties of the QWs. The photodevices of excitons may

have small size, low power dissipation, rapidness and high

efficiency. All of these properties are required to the inte-

grated photoelectric circuits.

The excitons are classified as Wannier excitons (they

have large radius and weak oscillator strength) and

Frenkel excitons (they have small radius and strong os-

cillator strength) by the size of the exciton model radius.

Recently, a new excitonic state — hybrid exciton

state in the composite organic and inorganic semicon-

ductor heterostructures has been described by pioneering

works.[1−7] Since then from quantum well (QW) to quan-

tum dot, the hybrid exciton states due to resonant mixing

of Frenkel and Wannier–Mott excitons have been demon-

strated. Reference [1] shows that the hybrid excitons pos-

sess a strong oscillator strength and a small saturation

density (or large radius). Reference [3] proposes to couple

Frenkel excitons and Wannier–Mott excitons through an

ideal microcavity.

There are two different coupling regimes into which the

interaction between the cavity field and optical transition

of the excitons can be classified. One is the weak coupling

regime where the exciton-photon coupling is very small

and can be treated as a perturbation to the eigenstates

of the uncoupled exciton-photon system. Another is the

strong coupling regime where the exciton-photon coupling

is so strong that it is no longer treated as perturbation.

In the strong coupling regime, the QW excitons emit pho-

tons into the cavity. The photons are bounced back by

the mirror and reabsorbed by the QWs to create excitons

again. So the Rabi oscillations are formed. The exciton-

polariton mode splitting in a semiconductor microcavity

is also observed by many experimental groups, such as in

Refs [8] and [9].

In this paper, we will deal with the hybrid exciton-

polariton states for the organic and inorganic QWs in a

bad cavity. In Sec. 2, we use the motion equations in-

cluded damping effect to give the mixed hybrid-exciton

and cavity field modes, that is, hybrid exciton-polariton.

In Sec. 3, we will give the emission spectrum of the system

in the case of the stationary state and the corresponding

numerical results are also given. In Sec. 4, a simple con-

clusion is given.

2 Model and Exciton-Polariton States

We begin with the Hamiltonian of the organic and in-

organic quantum wells in an ideal microcavity[3]

H =
∑

k

[h̄ωW A†
kAk + h̄ωF B†

kBk + h̄Ωa†
kak]

+
∑

k

[h̄Γ13(A
†
kak + Aka†

k) + h̄Γ23(B
†
kak + Bka†

k)] , (1)

where Ak (A†
k), Bk (B†

k) and ak (a†
k) are usual boson op-

erators for Wannier excitons, Frenkel excitons and cavity

fields. Γ13 = (1/h̄)P 01
W E0 and Γ23 = (1/h̄)P 01

F E0, P 01
W,F

are the moment matrix elements for Wannier and Frenkel

excitons from the ground state to the first excited state.

E0 is the amplitude of the vacuum electric field at the cen-

ter of cavity. This Hamiltonian is linear. For a bad micro-

cavity, we could solve it by the motion equation included

the damping coefficient and obtain any mixed solutions of

the hybrid exciton and cavity field.

But here, we only deal with the case of a single mode

cavity field. That is, the above equation is simplified into

H = h̄ωW A†A + h̄ωF B†B + h̄Ωa†a

+ h̄Γ13(A
†a + Aa†) + h̄Γ23(B

†a + Ba†) . (2)

So we have the motion equation

∂a

∂t
= −iΩa − iΓ13A − iΓ23B − γ1a , (3a)



No. 1 Hybrid Exciton-Polaritons in a Bad Microcavity Containing the Organic and · · · 119

∂A

∂t
= −iωW A − iΓ13a − γ2A , (3b)

∂B

∂t
= −iωF B − iΓ23a − γ3B . (3c)

In order to describe the properties of the bad cavity, the

damping coefficients, γi are added phenomenologically to

Eqs (3). In fact, when we write out the interaction be-

tween the system and reservoir, we could give a motion

equation which includes the fluctuation terms and dis-

sipative terms by the Markov approximation. However,

because we want to discuss the exciton-polaritons in the

strong coupling regime, we are not interested in the noise

properties of the system. So the fluctuation terms may be

neglected.

By making use of the Fourier transformation, we have

(iγ1 + ω − Ω)a(ω) = ia(0) + Γ13A(ω) + Γ23B(ω) , (4a)

(iγ2 + ω − ωW )A(ω) = iA(0) + Γ13a(ω) , (4b)

(iγ3 + ω − ωF )B(ω) = iB(0) + Γ23a(ω) , (4c)

where a(0), A(0) and B(0) are initial operators for the

cavity field, Wannier excitons and Frenkel excitons re-

spectively. In order to obtain a(t), we need solve the pole

equation

(iγ1 + ω − Ω)(iγ2 + ω − ωW )(iγ3 + ω − ωF )

− (iγ2 + ω − ωW )Γ2
23 − (iγ3 + ω − ωF )Γ2

13 = 0 . (5)

The solutions of this cubic equation could be obtained

analytically by using any mathematics handbook, such as

Ref. [10]. But usually, a cubic equation can be solved more

quickly with numerical methods than with analytical pro-

cedures. So, we set the forms of the analytical solutions of

Eq. (5) as ω1 = ω′
1− iΓ1, ω2 = ω′

2− iΓ2 and ω3 = ω′
3− iΓ3

respectively. If we make

F (ω) = i(iγ2 + ω − ωW )(iγ3 + ω − ωF )a(0)

+ iΓ23(iγ2 + ω − ωW )B(0)

+ iΓ13(iγ3 + ω − ωF )A(0) , (6)

we have a(t) as

a(t) =
F (ω1)

∆1∆2
e−iω1t −

F (ω2)

∆2∆3
e−iω2t +

F (ω3)

∆1∆3
e−iω3t (7)

with ∆1 = ω1−ω2, ∆2 = ω1−ω3 and ∆3 = ω2−ω3. ωi are

determined by the pole equation. This equation indicates

that the strong coupling of the two kinds of QW exciton

states and cavity field results in three new eigenstates.

Their eigenvalues are ω1, ω2 and ω3 respectively. These

states are just hybrid exciton-polariton states. Their en-

ergy splittings are ∆1, ∆2 and ∆3 respectively.

3 Stationary Spectrum

For the case of the ergodic and stationary process, the

emission spectrum of the system is defined as[11]

S(ω) =

∫ ∞

0

e−iωt〈a†(t)a(0)〉dt + c.c . (8)

If the cavity field, Wannier exciton and Frenkel exciton

are initially in the number states |nc〉, |nW 〉 and |nF 〉 re-

spectively, then

〈a†(t)a(0)〉 = n̄c

[

−i
E(ω1)

∆∗
1∆

∗
2

e iω1t

+ i
E(ω2)

∆∗
2∆

∗
3

e iω2t − i
E(ω3)

∆∗
1∆

∗
3

e iω3t
]

, (9)

where n̄c is mean photon number of the cavity field and

E(ω) = (iγ2 + ω − ωW )(iγ3 + ω − ωF ) . (10)

As the general exciton-polaritons,[12] if we assume that

the damping is moderate, the process is almost ergodic

and stationary. It is deserved to point out that all of the

parameters excepting for ω are fixed by the properties of

the organic and inorganic QWs as well as microcavity ma-

terial. We may always choose some moderate parameters

so that the stationary condition could be satisfied. So the

spectrum of the system is

S(ω) =
A

(ω − ω′
1)

2 + Γ2
1

+
B

(ω − ω′
2)

2 + Γ2
2

+
C

(ω − ω′
3)

2 + Γ3
2

(11)

with

A(ω) = 2n̄c

Re [E(ω1)∆1∆2(ω − ω1)]

|∆1|2|∆2|2
, (12a)

B(ω) = 2n̄c

Re [E(ω2)∆3∆2(ω − ω2)]

|∆3|2|∆2|2
, (12b)

C(ω) = 2n̄c

Re [E(ω3)∆3∆1(ω − ω3)]

|∆3|2|∆1|2
. (12c)

We find that when the system reaches stability, the

hybrid exciton-polariton spectrum is superposition of

three Lorentzian lines which are expected. The exciton-

polariton splitting may be measured at the peak points of

the emission spectrum which are determined by the con-

dition dS(ω)/dω = 0.

We apply the general Eq. (11) to give a numerical

sketch map. We firstly adopt the assumption of Ref. [3],

namely ωF = Ω, ωW = ωF (1 + δ), δ = 10−2.

Now we give a set of possible values for the above pa-

rameters. n̄c only determines the amplitude of the spec-

trum, so we set n̄c = 1. We assume that ωF = Ω =

1562 meV, Γ2
23 = 16 meV, Γ2

13 = 8 meV, γ1 = 0.1 meV,

γ2 = 0.18 meV and γ3 = 0.12 meV. We give the sketch

map of the spectrum for the system in Fig. 1.

This sketch map shows there are sudden changes near

the three peaks. If we choose moderate parameters A(ω),

B(ω) and C(ω) as slow varying functions of ω near the

peaks and consider them as constant, the sudden varying

points will disappear, the precise stationary spectrum is

given.
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Fig. 1 Schematic drawing for the emission spectrum.

4 Conclusion

In conclusion, the hybrid exciton-polariton states in a bad microcavity containing the organic and inorganic quantum

wells are given. Although we only discuss a single-mode model, this approach could also be applied to general case.

This paper shows that the hybrid exciton-polaritons decay at three different rates. The analytical and numerical results

of the emission spectrum for the exciton-polaritons are also given.
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