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Abstract We present a generalized two-state theory to study the output coupler for Bose—
Einstein condensate atoms and its interference. The results show that the fraction of out-
coupled atoms can be adjusted between 0% and 100% by varying the amplitude of the rf.
radiation, and the interference patterns of the two coherent outputs that are coupled out of a
double-well trapped potential vary with time. Moreover, we study the influence of atom-atom -
interactions on the output. In contrast with the case without atom-atom interactions, collapses
and revivals appear in the number of the output atoms.
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I. Introduction

The recent realization of Bose-Einstein condensation (BEC) in atomic gases!! % provides
a chance to generate a bright beam of atoms with a very narrow energy spectrum — an atom
laser.[5] An atom laser would have many applications in atom optics including atom lithography
and nanofabrication, as well as fundamental tests of quantum theory for describing both the
interaction between atoms and matter and the interaction between atoms and the radiation
field. '

A number of theoretical atom laser schemes have already been proposed.[6=1! These have
involved some methods of cooling atoms in an atomic cavity, a schematic model for coupling
atoms to external freely traveling atomic modes and some methods for output coupling based
on changing the internal atomic state using a Raman transition in a spatially localized region.
For example, Wiseman!”! used dark state cooling as the mechanism in which the atoms are
transferred from the source to the lasing mode irreversibly by spontaneous emission. Holland
et al.[) and Guzman et al.!8 used inelastic binary collisions to transfer atoms from the source
to the lasing mode. This process is made irreversible by using evaporative cooling to rapidly
remove the high energy atoms from the system.!®] Whereas in Ref. {8], the number of atoms
in the lasing mode depends on the pumping and loss rates. Moy et al.l9 presented an atom
laser scheme using a Raman transformation and two atomic cavities, one of the cavities is for
the source atoms, the other has only one significantly populated mode for output atoms. The
role of Raman transition is to change the state of atoms in ground mode (lasing level)’in one
cavity to a nontrapped state (output level) in other cavity. Hopel'll used a set of external
modes to couple atoms out of trapped cavity, it provides a new formalism for describing the
interaction between an atomic cavity and a continuum of external atomic modes.

In contrast with the above models, the key feature of the present paper is to develop a
two-state theory for an atom coupler. The paper is organized as follows. In Sec. II, we derive
the Hartree-Fock equations, which describe the spatial distribution of trapped and untrapped
atoms. In Sec. III, ignoring the atom-atom interactions, we introduce the usual Bogoliubov
transformation to discuss the properties of out-coupled atoms and its interference. Considering
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the atom-atom interactions, the coherence loss is discussed in Sec. IV. In Sec. V, we discuss
the influence of the atom-atom interactions on the out-coupled atoms. Finally, in Sec. VI, we
summarize our conclusions and discuss some limitations of our work.

II. The Hartree—Fock Equations

In this section, we derive the Hartree-Fock (HF) equations within the framework of the
variational principle. The solutions of these equations represent the amplitude of trapped and
untrapped atoms’ spatial distributions.

The ground-state free energy is the expectation value of H — ulN , where H is the many-body
Hamiltonian of the boson system, N the number operator, and g the chemical potential,

H -l = / a*rd! (r) Hod(r) + % / ECrd® P )t (W (r — ) )br), (1)

where 9!(r) creates an atom, 3(r) annihilates one at position r, V{(r — ') stands for the
interatomic potential, Ho{r) is the one-body part of the free energy

Ho(r) = — o= + Veulr) — 1, 2

where V,.(r) is the external potential. To find equations for single-particle orbitals, a varia-
tional principle is applied to the ground-state free energy. Using the pseudopotential approx-
imation and writing ¥(r) = 3, @i¢:(r) the atom-atom interaction V,, in free energy becomes

Vo= 23 [ 46165 n)6un(r) @l 3)
zgkl
where the bracket (---) denotes a thermal expectation value and a short-range interaction
V(r —7') = gé(r — ') is used. Using the generalized Wick’s theorem, this expectation value
is expressed in terms of all possible contractions

(alalaras) = (alal)(arar) + (alac)(alar) + (alai)(alax)

= (&I&;)(&k&[) + NiJikNjch, + N,'(S,;le(Sjk . (4)
With this notation, the mean-field expression for the ground-state energy reads
F= (H - NN) = hl + Vdir + Vexch + VUpair , (5)

where h; = Y, Ni¢}(r)Ho¢i(r) is the one-body contribution to the ground state energy;
Vdir = /d3 Z(ﬁ (r)9; )¢J(7')NN
denotes the direct energy contribution to the energy in analogy with the Hartree~Fock theory;
Vexch = / d3rz¢ (r)$3(r)¢; (r)di(r)N:N;
stands for the exchange energy in comparlson with the Hartree—Fock theory;
e = & [ €0 T 810)63r)u(r)u(r) @ nt)
ijkl

describes the pair energy, which is absence for the Hartree-Fock expressions. The extremum
of F with respect to N; leads to an eigenvalue equation for ¢;,
* Hog: +2gNi|6:*8: + g ) _ Njl¢|*¢: = 0. (6)
J#i
The scheme of an atom laser is most easily discussed using the following two-level model:[1°
N bosons can occupy only two one-particle states ¢o(r) and ¢;(r) taken orthonormally,
J a3réid; = §;;. According to Eq. (6), ¢o(r) and ¢,(r) are determined by
Hodo + 2gNol|do|*do + gNi1|¢11*¢0 =0,  Hody + 2gN1|é1]¢1 + gNo|dol’¢1 =0. (7)
This is a set of coupled HF equations (Each of them is time-independent Gross—Pitaevskii
equation). In order to get the solutions of the HF equations, one must solve the coupled
HF equations self-consistently, we refer the detailed method of solving the HF equations to
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Ref. {13]. Strictly, the temporal coordinate should be involved in Eqgs (7), this can be done by
converting Hy into Ho — ik(8/0t).112

I1I. Fraction of Out-Coupled Atoms and Its Interference

In MIT experiment, the untrapped level couples with the trapped level through a resonant
rf. pulse. The trapped state evolves into a superposition of the trapped and untrapped states,
which makes a coherent beam of atoms out of trapped level.

In order to calculate the fraction of the out-coupled atoms, we use the second quantized
Hamiltonian ]

_ y,N = eooa;‘)ao + euaial + [{e10 + v)a{ao +he]+ 3 Zu,—iklaza}akal , (8)
ijkl

which is easily derived from Eq. (1) by using 1,[3(7') = agdg + a1¢;. Here

eij = / d*r¢;Hodj,  wjm=g / A’re;d;rdi -

We have introduced the term v = v(k,F) = F [d3r¢]e'* ¢y to describe the interaction’
between the atoms and the rf. radiation, which varies with the amplitude F of rf. field.
For clarification, we drop the mteractmn arnong the atoms, it is given that

H - uN = eooaoao + eualal + [(e10 + v)alao +hel]. 9)
Through the usual Bogoliubov transformation
ag = —cosBA +sinfB, a, =sinfA+cos8B, ' (10)
the Hamiltonian can be diagonalized
‘ ‘ H-uN =EsA'A+ EpB'B, (11)
where 0 satisfies '
sin 6 cos 8(e;; — ego) — cos® O(e1p + v) + sin?f(eg; +v*) =0 (12)

and the energy of quasiparticles is
Es = eqg ¢os® 0 + e, sin? @ — Re (e10 +v)sinfcos b,

Ep = egosin?6 + e1; cos® 0 + Re (e10 +v)sinfcosf. (13)
The transformations enable us to establish a relation between the quasiparticle (QP) state
and the resulting particle (RP) state. First, the QP vacuum state |0)qp defined by A|0)qp =
B|0)qp = 0 is just the RP vacuum state, i.e., [0)rp = |O)qp. Second, the coherent states
of the quasiparticles are related to the coherent state of resulting particles. The connection
between the parameters of both the coherent states are
Ogo = —cosfa, + sinbag, Qq, =sinfa, + cosbag, (14)
where a; (i = ao, a1, A, B) stands for the coherent state of i particle.

In Ref. [10], the authors achieved a Bose condensate of atoms in trapped state, then
turned on a resonant rf. radiation that couples the trapped and untrapped states during time
T approximated 5 us, the output pulse of atoms in the “repelled” state was observed after the
rf. interaction. To compare with the experiment, we assume that the atoms are initially in
condensate, in other words, the initial condition is

l¢(0)) = |0)1 ® 0o, * (15)
which satisfies agl¢(0)) = ao|®(0)}, a1]p(0)) = 0. The interference between two freely expand-
ing Bose—Einstein condensations has confirmed that the Bose condensed atoms are coherent
and show long-range correlations.!®] These enable us to take Eq. (15) as the initial condition.
At time ¢, the state evolves to

lo(t)) = |ag sin® Be ™18t - ag cos? fe~iEAL),

® |—agsinfcosfe +aosin9cosee"iE5‘)1, . (16)
where |-+ -)g and |---); denote the coherent trapped and untrapped states, respectively. The
number of atoms coupled out of the condensate reads

= (p(t)|ala1]p(t)) = ool Ol L sin®26[1 — cos(E4 — Ep)t]. 17)

—iE4t
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It is obvious from Eqs (16) and (17) that at time ¢t the N-atom wavefunction evolves to a
superposition of both the coherent states for trapped and untrapped atoms. Moreover, the
total N-body wavefunction factorizes into the condensate and the untrapped pulse of atoms.
After the interaction of the rf. pulse of duration 7, the fraction of atoms coupled out of the

condensate oscillates with the amplitude of rf. pulse through 0 as

—11—\(7—1 = N—]—V& = —:2l-sin2 20(1 — cos(E4 — Eg)7]. (18)
The fraction of out-coupled atoms, as showed in Eq. (18), can be adjusted between 0% and
100% by varying the amplitude of the rf. radiation. As illustrated in Fig. 1 the results are in
good agreement with the experiment. In a recent interference experiment reported in Ref. [5],
using Ioffe trap, 5 x 10° sodium atoms are collected in a cigar-shaped trap volume which is
divided into two halves along the longitudinal direction by a sheet of far-blue detuned laser
light, the condensate expansion is started by switching off the trapped field and eventually
leads to an overlap of the two clouds and to an expanding interference pattern. Based on the
NLSE, A. Rohrl et al!' have shown the excellent agreement between this experiment and
the theoretical prediction. In contrast with this experiment and theoretical predictions, we
predict that for double-well trap two atom beams (one coupled out of the left well and another
of the right one) will overlap and lead to an interference pattern. This intuition arises from
the coherence of the atoms coupled out of the condensate.

1.0 - ’
0.8 |
0.6
0.4
0.2
0.0 - ! | ] |
0 2 4 6 8 10

The rf. amplitude (arb. units)

Untrapped fraction

Fig. 1. The fraction of the out-coupled atoms versus the amplitude of the rf. pulse. All
parameters are taken in arbitrary units. ego = 1.0, e1; = 3.0, e1g = eg1 = 2.0, g = 1.

To show the interference pattern, we shall compute the space-dependent wavefunction for
the atoms coupled out of the condensate. Using Eq. (16), the wavefunction of those atoms

reads
les(r, 1)) = (p(B)lar e b1 (r)p(t)) = e s (r)f '®t, (19)

where

_ RS B> —18?
f=f(t0,00,9)= e 1o,

= /nl(n —1)! agsin 6 cos § Mod(e—iBnt — g=iEat)

e—iEat _ e_iEAt

E=Mod(e“iEB‘—e“3EA‘)’ B = agsinfcosf(e

and Mod(- - -} denotes the module of the terms in brackets. The terms e'*" in Eq. (19) arise

from the atom-rf. pulse interaction and the gravity acceleration, the rf. radiation excited

an atom from the trapped state to untrapped state with a momentum transfer, whereas the

gravity accelerated downward the output atoms. On the analogy of Eq. (19), we introduce

l@ry(rt)y = elkruy(rH (=g, () fawy € BRI to denote the wavefunction of the atoms

coupled out of the right- (left-}trapped well. With this notation, the interference pattern is
N(rt)= > |¢:PIfil* + 20rdsfafu cos|(Kr ~ Ki)r + (Ki + Kr)d + (Er — EL)t]. (20)

i=R,L

—iEgt _ e—iEAt) ,
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In general, the difference between the two wave vectors |Kg — K| is so small that the term
(Kr— Kp)r in Eq. (20) can be neglected. Thus the fringe spacing of the interference pattern
is mainly dependent on the separation of the double wells. Considering classically the wave
vector as Kp(ry = (r/t)m, our result is that the fringe spacing is directly proportional to time
and inversely proportional to the separation d. Neglecting the interactions among the atoms,
both ¢ and ¢, are determined by Eq. (7) with g = 0 to be a Gaussian packet. Thus the
first two terms in Eq. (20) are Gaussian, but the third term is more complicated. Figure 2
displays a theoretical interference pattern for ¢ = 0 in z direction, from which we note that
the contrast of the interference is reduced in the central region and vanishes rapidly outside
the center. This is very similar to the theoretical and experimental results for two independent
condensates. The phase difference between the beams which varies only between different runs
of the experiment has been dropped here, it will result in a shift of the interference pattern.

120 -
100 -
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40 -

Interference patterns

20
o

—6 —4 -2 0 2 4 6

z (arb. units)

Fig. 2. Interference patterns in = direction after the interaction of an rf. pulse with duration
7 =5 us. Here we neglect the interaction among the trapped and untrapped atoms.

In the case of considering atom-atom interaction, the fringe spacing of the interference
patterns is very similar to what we stated above. On the analogy of the results stated in
Refs [14] ~ [186], the fringe spacing in position space increases with a velocity proportional to
hr/ md, where 2d is the mean space separation of the atoms in the double well.

IV. Coherence Loss

As mentioned in Sec. III, all conclusions derived from the Hamiltonian (9) are based on the
assumption that the interactions among the trapped and untrapped atoms can be dropped.
However, thermalizing collisions will play a crucial role for long evolution time. Unfortunately,
no successful theory has been proposed for the treatment of the dynamics of inhomogeneous
condensates in such a nonequilibrium situation. In order to obtain a preliminary estimate for
the influence of atom-atom interactions on the coherence, we resort to the following consider-
ation, which is based on the short-time perturbative expansion.[!”]

For two independent Bose condensates, the theory of correlation functions showed that!!5]
a visible interference between the two condensates requires conditions

1 )
(o) = (afar) ~ o, WOeCET

{ajai)
The first condition implies that the occupation of the two condensate modes (Z = 1,2) has to
be comparable to the total number of atoms N, whereas the second condition requires that
the phase coherence has to be large during the observation time 7, in which the spatial pattern
is recorded. In other words, visibility of these fringes requires a negligible decay of the first
order correlation function for the experimental observation time 7. In this section, we do not
deal with the problem of visibility of these fringes discussed in Sec. III, but shed some light
on the coherence of the atoms coupled out of the condensate.
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The short-time perturbative expansion, reported in Ref. [17], can be summarized as follows.
Considering two interacting subsystems, the total Hamiltonian can be written as
H = Hoy + Hoz + Hint (21)
where Hy; (Hpz) describes the subsystem 1 (subsystem 2), Hiq represents the interaction
between the subsystems. According to the quantum coherence theory, §;(t) = Tr;{p; (t)—p*(t)}
describes the decoherence of the subsystem 2, where p;(t) is the reduced density operator of
subsystem ¢ and Tr; denotes a trace over subsystem i. In terms of a short-time power series,
the decoherence d;(t) becomes

t2 d%p2 t  t?
52(‘)—1—Tr2(P2(0)+t (0)+2 dtg (0)4’"')—50—;—;25—'“ (22)

with definitions
§o=1—Tra(p3(0)), 1/m1 = 2iTr2{p2(0)Tr1[p(0), HI},

1/73 = =Tr2{(Tr1[p(0), H])*} = (Tr1[(p(0), H], H]) pa(0) » (23)
where the symbol (---),,(0) denotes an average value over the subsystem 2, p(0) stands for
the total density operator at ¢ = 0. In the present case the subsystems 1 and 2 are the
trapped and untrapped atoms, respectively. As showed in Sec. III, the atoms coupled out of
the condensate are coherent in the situation of ignoring the interactions among the atoms.
However, the interactions will play a crucial role for long evolution time. In order to study
the influence of atom-atom interactions on the coherence of the out-coupled atoms clearly, we
reduce the Hamiltonian (8) to the energy conserving terms!®l

H= eooaoao + enala; + (e10 + v)alag + (o + v )a{,al
+ 59“0000050800% + §gu111101010101 + 2guior0adacalay . (24)
This approximation does not consider those processes that are energetically unfavored, such
as the annihilation of the two ground-state atoms producing two atoms in high energy. These
unfavored terms will be discussed further.
In accordance with the experiment in MIT, we take

l¢(0)) = |ao)o ® |@1)1 (25)
as the initial condition, in other words, the trapped atoms are initially in a coherent state
leto)o, while the untrapped atoms are in a coherent state |a;);. Starting from this initial
condition, we obtain

60 = 0 1/7’1 = 0 l/T —4g u0101|a1| |a0| (26)
These results imply that the decoherence time depends on the coupling constant g, spatial
distribution of the trapped and untrapped atoms and the initial conditions. In experiment, !
the atoms are prepared in condensate at ¢t = 0, in this case, §o = 1/7; = 1/7% = 0. There-
fore, we conclude that the atom-atom interactions could not destroy the coherence of output
coupling in MIT experimental conditions. The interaction term uuuala{a]al will lead to
destroying the coherence after the atoms being released from the condensate. We refer an
alternative discussion on this problem to Ref. [16].

V. The Influence of Atom-Atom Interactions on the Fraction
of Out-Coupled Atoms

As shown in the last section, the interactions among the atoms do not destroy the coherence
of the output coupling. This conclusion is available in the regime in which (i) rotating wave
approximation (RWA) is valid and (ii) all the atoms are initially in condensate. A question then
arises naturally: How does the atom-atom interaction effect the out-coupled atoms when the
two conditions (i) and (ii) are held? To answer this question, we start with the Hamiltonian
given in Eq. (24). We introduce N = agao + aIal to denote the number operator of the
system, it is obvious that [H, N] = 0, namely, the total number of the atoms is invariant in
the evolution process. If the total number N; of the atoms is fixed, the eigenfunction of the
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system can be expanded as

l¢) = 3" Buln, N = n), (27)

where |n, N; —n) = |n)g ® |N; — n}y, there are n trapped atoms and N, — n untrapped atoms
in the system. Substituting Eq. (27) into steady Schrédinger equation H{p) = E|p) yields

Bn+l Bn
= Mn s
( Bn ) (Bn—l > (28)
("(Hn,n - E)/Hn,n+1 _Hn,n—l/Hn,n-i-l)
1 0 ’

Hn,n—-l = (601 +v*)\/n(Nt -n+1),
. 1
Hn,n = egom + e“(Nt - TL) + EUOOQQTL\/ (n - 1)(71 + 1)
1
+ 2up101n(N; — n) + Eullll(Nt —n)V/(Ne—n—1)(N,—n+1),

Hp npy = (e10 +v)V/(n+1)(N, — n).

The maximum of n is Ny, this gives a condition of steady solution for the system

N R
(Eﬂ Mn)11 =0. ) (29)

where

M, =

0.8
=
2 0.6 -
-
Q
g
G
- 0.4 -
Q
o
a
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[
=
< 0.0 -
1 | L ! L i !
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Time

Fig. 3. The influence of the atom-atom interactions on the number of the out-coupled
atoms. The figure shows the number of the out-coupled atoms versus time. The parameters
are taken as uge = 0.3, u11 = 0.1, upy = u10 = 0.2. The other parameters are the same as
those in Fig. 1.

To compare with the experiment, we take |0}; ® |ap)o as the initial condition. The time-
dependent Schrédinger equation for the many-body wavefunction in the Fock representation

N
le(t)) = Y Bu(t)ln, Ny — ) (30)
n=0
e ih(0Bn(t)/8t) = HynBa(t) + Han—1Bn-1(t) + Hp ny1Bnyi(t). (31)

At time t, the number N; of atoms coupled out of condensate and the number Ny of atoms in
condensate are given as Ny = |ap|? — Ny and Ny =, 25;0 n|B,(t)|?. Equation (31) is similar
to Eq. (5) in Ref. {18], which was derived to study the quantum evolution of a collective mode
of a Bose—Einstein condensate. Here we do not deal with the detailed numerical calculations,
but give the main results. In comparison with the results given in Eq. (18), the number of
atoms coupled out of condensate varies with time to show collapse and revivals. The collapse
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time depends on the coupling constant and the parameter ag, which is illustrated in Fig. 3.
The results indicate that it needs long duration of the rf. pulse to couple out the atoms from
a condensate. The dependence of the fraction on the amplitude is more complicated in this
situation.

V1. Conclusion

In this work we have generalized the two-level model pioneered by Ketterle et al. as an atom
laser model to study the fraction of output, its interference and the coherence loss. The space-
dependent wavefunction of the out-coupled atoms was derived to be the solution of NLSE.

s Neglecting the atom-atom interaction, this wavefunction is a Gaussian packet. To learn more
information about this wavefunction, we have to solve the NLSE consistently. The fraction of
the atoms coupled out of the condensate can be adjusted between 0% and 100% by varying
the amplitude of rf. radiation with duration 7. The output atoms can be well described using
a coherent state. A criticism that has recently been made for a number of atom laser schemes
is the lack of consideration on the atom-atom interactions (collisions), which is important
obviously in a number of modelsl®8! for an atom laser to provide the transitions to the lasing
mode. Under the RWA, we studied the influence of atom-atom interaction on the coherence
and the number of output atoms. In the condition of experiment held in MIT, the atom-atom
interactions do not lead to destroying the coherence of the output atoms, but they change the
fraction of the output and the dependence of the output on time, the longer duration of the rf.
pulse is needed to couple atoms out of condensate than in the case of no interactions. For a
double-well trapped potential, two beams of atoms which are coupled out of the right well and
of the left well, respectively, will overlap and show inference patterns, and the fringe spacing
depends mainly on the separation of double wells and time. If the separation of double wells
disappears, there are not interference patterns, but an enhanced beam of atoms.

This work removes from consideration of the finite temperature and the dissipative effects.
The atom interactions we considered here are only the energetically favored term, i.e., the
terms under RWA. The other terms of the atom-atom interactions have also effects on an
atom laser and the coherence loss. These need further investigations.
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