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By using the Wei-Norman’s method, the deflection of an atomic beam with a large
period quantized standing light wave is analyzed for the case with two-level atom
and single-mode cavity field. It is concluded that after passing through the standing
light wave in cavity, the atomic beam is split into infinite beams symmetrically, and
each momentum shift for a split component is proportional to the interaction time.
It is also shown that the output momentum distribution of atoms is sensitive to the

statistical properties of the cavity field.

PACS: 03.65.-w, 32.80.-t, 42.50. Vk

With the development of experimental techniques in quantum optics, the study of me-
chanical effects of light on neutral atoms has made a great progress in last years. Especially,
the interference of two atomic beams employing atomic matter-wave interferometers has been
observed in several delicate experiments.)'? There are several methods to construct atomic in-
terferometers, one of which uses standing light wave as splitter.? The standing light wave is
also applied to adiabatically cool atoms and deflect atomic beams.* The deflection of atomic
beams has been extensively studied both experimently and theoretically.®~® In fact, ones have
experimentlly investigated the relevant imaging and focusing of atomic beams in a large period
standing light wave.® Our motivation is to analyze the deflection of an neutral atomic beam in
a large period quantized standing light wave by making use of a purely analytical method other
than a numerical caculations.

Let us consider a two-level atom interacting with a quantized resonant standing light wave
perpendicular to the direction of the moving atormic beam. In this case the longitudinal mo-
mentum of the atom is unchanged, and so our analysis only concerns the transverse atomic
momentum. With a rotating wave approximation, the Hamiltonian of atom-field system is

written as®®
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H= ?%; + Ehwoz + hwaya+ Eg(0'+a + o_a*)sin(kz) , (1
where p is the momentum along z direction, oy = 0, +i0y, and 0;,0y, 0, the Pauli matrices;
a and a* the annihilation and creation operaters of the cavity field mode. In the interaction

picture, the Hamiltonian becomes

-2
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A = o + §hg(a'+a + o_at)sin(k2) . (2)
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By taking into account the large period case that the wave number k is very small, the above

Hamiltonian can be linearized by keeping the first-order term of the Maclaurin expansion of
sin(k%),®

. 1 o

He=o—+ Ehgk(a+a + a_a+)»a“cb . (3)

Let us solve the eigenvalue problem of the operator A = ocira+o_at. In a subspace spanned

by [n) ® [ 1) and |n+ 1) ® | |), where |n) is the Fock state, and | }),| 1) are the ground state
and excited state, the representation of the operator 4 is
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Obviousfy, the eigenvalues and corresponding eigenstates are

1
A:i:rl = iihgk \ n+1 9
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The above eigenstates: are the dressed states of the system. In addition to these eigenstates,
|0, ]} is also the eigenstate of A with zero eigenvalue. Now we assume the initial state
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where p, is the initial momentum of mass center, and B4, = (Cn j:Cn+1)/2 is related to the field
photon distribution. Then, the wave function at time ¢ can be obtained from Eq. (3) formally,

[B(2)) = e~ Ht/M(0)) =—,—}c ~it}/2mh| )y 6 0y @ | |
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The operator U (t) — e~ it/A(zz+2x%) can be factorized by using ‘Wei-Norman’s method.1®1! In
fact, the operators $%;, , and 1 form a closed four-dimension Lie algebra. Let us substitute
the Wei-Norman’s Ansatz solution

U(t) = e*(DP° PP (1)F () (8)

into the effective equation. .. .. o . ; . ,
5ie 2 A G
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to determine «f(t), (1), v(t), and x(t).
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With the help of Baker-Hausdoff formula, the following equations are achieved:

&(t) = —2mih,  B(t) = 2i0(t)a(t) ,
p(t) = —ida/h,  x(t) = i(t)B(2) .

Under the initial conditions a(0) = B(0) = v(0) = x(0) = 0, the solution of the above equations
is '

(10)

—it ) —iA,t?
—iAnt —iAZ¢3 (11)
vit)= = xO= e

Finally, the factorization of U(t) is obtained as

—itp? —irg12p —irgte —irZed

ﬁ(t):_eﬁmhe Tmk e ke 6mh ' (12)

By substituting Eq. (12) into Eq.(7), the wave function at time ¢ is written in a explicit form:

1 had —ina2 43
[¥(t)) = 75001 P)®10)®[1)+ Y Bae o | pa) @ [An) (13)
where p, = 0 and p, = —A,t. It should be noticed that we have assumed the initial momentam

of the mass center is zero in obtaining the above simple result.

It is observed from Eq. (13) that after the atomic beam passed through the cavity, the atomic
wave function is truly spatially seperated and the beam is split into infinite beams symmetrically.
Physically, this symmetrically split results from the discrete transverse momentum, which is
proportional to the interaction time ¢ and the eigenvalues Ayn = +(hgk+/n + 1)/2 for different
dressed states. Because the longitudinal momentum is unchanged in this process and the
eigenvalue is related to the photon number, the longer the interaction time and the larger the
photon number, the larger the deflection angle. The probability of finding the momentum Agn
is |B4|? which depends on both the initial field photon distribution and the initial probability
of finding atom in the ground and excited states by Eq.(6). Therefore, it is concluded that the
output momentum distribution of atoms is sensitive to the statistical properties of the field and
conversely the statistical properties of electromagnetic field can be directly probed by using the
output momentum distribution.
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