Quantum Group Construction of Non-standard R-matrix for Yang-Baxter Equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 Chinese Phys. Lett. 8495
(http://iopscience.iop.org/0256-307X/8/10/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 166.111.26.68
The article was downloaded on 16/12/2010 at 12:36

Please note that terms and conditions apply.

Quantum Group eórstruetion of Non-standard

R-matrix for Yang-Baxter Equation*

GE Molin, SUN Changpu ${ }^{\dagger}$, XUE Kang ${ }^{\dagger}$
Theoretical Physics Division, Nankai Institute of Mathematics, Tianjin 300071
${ }^{\dagger}$ also Department of Physics, Northeast Normal University, Changchan 130024

(Received 25 March 1991)
By taking the concept of weight conservation into account, new solutions of Yang-Baxter equation without spectral parameter are obtained through the non-standard R-matrix on the tensorial space $V^{1 / 2} \otimes V^{j}(j \neq 1 / 2)$ in terms of the irreducible representation of the quantum universal enveloping algebra $S L_{q}$ (2). The non-standard R-matrix $R^{1 / 21}$ is obtained in an explicit form for $j=1$.

PACS: 02.20.+b, 05.50. $+q$
At present it is recognized that the Yang-Baxter equation(YBE) plays a crucial role in non-linear physics, such as exactly-solvable models of statistical mechanics, quantum inverse scattering method and so on. ${ }^{1}$ According to Drinfeld ${ }^{2}$ and Jimbo, ${ }^{3}$ a typical scheme to obtain the solution of YBE is figured through an example of $\mathrm{SU}(2)$ as follows.

Consider the quantum universal enveloping algebra (QUEA) SL_{q} (2), which is an associative algebra over the complex number field \mathbf{C} and generated by J_{+}, J_{-}and J_{3}, satisfying

$$
\begin{equation*}
\left[J_{+}, J_{-}\right]=\left[J_{3}\right], \quad\left[J_{3}, J_{ \pm}\right]= \pm 2 J_{ \pm} \tag{1}
\end{equation*}
$$

The universal R-matrix $R\left(\in \mathrm{SL}_{q}(2) \otimes \mathrm{SL}_{q}(2)\right)$ can be constructed in terms of $\mathrm{SL}_{q}(2)$

$$
\begin{equation*}
R=q^{J_{3} \otimes J_{3 / 2}} \sum_{n=0}^{\infty} \frac{\left(1-q^{-2}\right)^{n}}{[n]!} \cdot q^{\frac{1}{2} n(n-1)}\left(q^{\frac{J_{3}}{2}} J_{+} \otimes q^{\frac{-J_{3}}{2}} J_{-}\right)^{n} \tag{2}
\end{equation*}
$$

where we have defined that $[f]=\frac{g^{f}-g^{-f}}{q-q^{-1}}$ and $[n]!=[n][n-1] \ldots$ [1]. For given irreducible representations $\rho^{[j]}$ of $\mathrm{SL}_{q}(2)$ on the spaces $V^{[j]}$, the $j-j^{\prime}$ R-matrix $R^{j} j^{\prime} \in$ End $\left(V^{[j]} \otimes V^{\left[j^{\prime}\right]}\right)$ is given from Eq. (2) as

$$
\begin{equation*}
\bar{R}^{j} j^{\prime}=\rho^{[j]} \otimes \rho^{\left[j^{\prime}\right]}(R) \tag{3}
\end{equation*}
$$

The Hopf algebraic structure of $\mathrm{SL}_{q}(2)$ ensures $R^{j} j^{\prime \prime}$ to satisfy the YBE without spectral parameter: ${ }^{4}$

$$
\begin{equation*}
R_{1}^{j_{1}}{ }_{2}^{j_{2}} R_{1}^{j_{1}}{ }_{3}^{j_{3}} R_{2}^{j_{2}}{ }_{3}^{j_{3}}=R_{2}^{j_{2}}{ }_{3}^{j_{3}} R_{1}^{j_{1} j_{3}} R_{1}^{j_{1}}{ }_{2}^{j_{2}} \tag{4}
\end{equation*}
$$

and the condition of "CP-invariance":

$$
\begin{equation*}
\left(R^{j j^{\prime}}\right)_{m_{1} m_{2}}^{m_{1}^{\prime} m_{2}^{\prime}}=\left(R^{j^{\prime} j}\right)_{-m_{2}-m_{1}}^{-m_{2}^{\prime}-m_{1}^{\prime}} \tag{5}
\end{equation*}
$$

[^0]where $R_{i i^{\prime}}^{j j^{\prime}}$ is defined on $V^{\left[j_{1}\right]} \otimes V^{\left[j_{2}\right]} \otimes V^{\left[j_{3}\right]}$ as
\[

$$
\begin{equation*}
R_{1}^{j_{1} j_{2}}=\sum\left(R^{j_{1} j_{2}}\right)_{m_{1} m_{2}}^{m_{1}^{\prime} m_{2}^{\prime}} E_{m_{1} m_{1}^{\prime}} \otimes E_{m_{2} m_{2}^{\prime}} \otimes I_{3} \ldots \ldots \tag{6}
\end{equation*}
$$

\]

The $j-j^{\prime}$ R-matrix constructed from Eqs. (2) and (3) in terms of a QUEA is called standard $j-j^{\prime}$ R-matrix. Through so-called Yang-Baxterization, ${ }^{5,6}$ one obtain the solution of YBE

$$
\begin{equation*}
R_{1}^{j_{1} j_{2}}(u) R_{1}^{j_{1}}{ }_{3}^{j_{3}}(u+v) R_{2}^{j_{2}}{ }_{3}^{j_{3}}(v)=R_{2}^{j_{2}}{ }_{3}^{j_{3}}(v) R_{1}^{j_{1}}{ }_{3}^{j_{3}}(u+v) R_{1}^{j_{1}}{ }_{2}^{j_{2}}(u) \tag{7}
\end{equation*}
$$

It is worth notice that the Kauffman's diagram technique(KDT) ${ }^{7}$ to directly obtain j-R matrix $R^{j} \equiv R^{j} j^{\prime}\left(j^{\prime}=j\right)$ has been extended to the case of arbitrary classical Lie algebra and non-standard j-R matrix or non-standard braid group representations obtained by this extended KDT can not be covered by standard ones. ${ }^{8}$

Now, a question rises naturally: Does there exist a non-standard $R^{j} j^{\prime}$ matrix when $j \neq j^{\prime}$? We recall that the concept of weight conservation is a key point for calculation of our extended KDT and proved to be satisfied by the quantum group constructed $R^{j}{ }^{j}$ matrix. ${ }^{9}$ Non-standard $R^{j}{ }^{j}$ matrices besides standard ones have been constructed in terms of quantum group or QUED in Ref. 9. Since $R^{j}{ }^{j}$ matrix is a special case of $R^{j} j^{\prime}$ matrix when $j=j^{\prime}$, we naturally hope to construct $R^{j} j^{\prime}$ matrix ($j \neq j^{\prime}$) through quantum group or QUED.

By a proof similar to that for $R^{j}{ }^{j}$ matrix, we easily observe that the standard $R^{j} j^{\prime}$ matrix ($j \neq j^{\prime}$) still satisfies weight conservation. Now, we consider the case that j or $j^{\prime}=1 / 2$. It follows from Eq. (4) that the $R^{j / 2}$ matrix and the $R^{1 / 2 j}$ matrix satisfy

The "CP-invariance" requires that Eqs. ($8-\mathrm{a}$) and ($8-\mathrm{c}$) are equivalent. Let

$$
R^{1 / 2 j}=\bar{R}^{1 / 2 j}+\Delta^{1 / 2 j}, \quad R^{j 1 / 2}=\bar{R}^{1 / 2}+\Delta^{j 1 / 2}, \quad R^{1 / 21 / 2}=\bar{R}^{1 / 21 / 2}
$$

be a solution of Eq. (4) where $\bar{R}^{1 / 2 j}, \bar{R}^{1 / 2}$ and $\bar{R}^{1 / 21 / 2}$ are standard. Then,

Using the explicit matrix elements of the irreducible representation $\rho^{[j]}$ of $\mathrm{SL}_{q}(2)^{10}$

$$
\begin{equation*}
\left(\rho^{[j]}\left(J_{ \pm}\right)\right)_{m}^{m^{\prime}}=([j \mp m][j \pm m+1])^{1 / 2} \delta_{m \pm 1}^{m^{\prime}}, \quad\left(\rho^{[j]}\left(J_{3}\right)\right)_{m}^{m^{\prime}}=2 m^{\prime} \delta_{m}^{m^{\prime}} \tag{10}
\end{equation*}
$$

the standard $R^{1 / 2 j}$ matrix and $\Delta^{1 / 2 j}$ are explicitly written as

$$
\begin{align*}
\bar{R}^{1 / 2 j}= & q^{1 / 2 \rho^{[1 / 2]}\left(J_{3}\right) \otimes \rho^{[j]}\left(J_{3}\right)} \sum_{n=0}^{1}\left(1-q^{-2}\right)^{n}\left\{q^{\rho^{\left[\frac{1}{2}\right]}\left(J_{3}\right)} \cdot \rho^{[1 / 2]}\left(J_{+}\right)\right. \tag{11}\\
& \left.\otimes q^{-\rho^{[1 / 2]}\left(J_{3}\right)} \cdot \rho^{[j]}\left(J_{-}\right)\right\}^{n} \cdot q^{1 / 2 n(n-1)}
\end{align*}
$$

and

$$
\begin{align*}
\Delta^{1 / 2 j}= & \sum_{k=0}^{2 j} A_{k} \rho^{[1 / 2]}\left(J_{-}\right) \rho^{[1 / 2]}\left(J_{+}\right) \otimes\left(\rho^{[j]}\left(J_{-}\right)\right)^{k}\left(\rho^{[j]}\left(J_{+}\right)\right)^{k} \\
& +\sum_{k=1}^{2 j} B_{k} \rho^{[1 / 2]}\left(J_{+}\right) \otimes\left(\rho^{[j]}\left(J_{+}\right)\right)^{k-1}\left(\rho^{[j]}\left(J_{-}\right)\right)^{k} \tag{12}\\
& +\sum_{k=1}^{2 j} C_{k} \rho^{[1 / 2]}\left(J_{-}\right) \otimes\left(\rho^{[j]}\left(J_{+}\right)\right)^{k}\left(\rho^{[j]}\left(J_{-}\right)\right)^{k-1}
\end{align*}
$$

respectively. Equation (9) determines the coefficients A_{k}, B_{k} and $C_{k}(k=1,2, \ldots, 2 j)$.
For example, when $j=1$,

$$
\begin{align*}
\left(\Delta^{1 / 2}\right)_{m_{1}}^{m_{1}^{\prime}} m_{2}^{\prime}= & \delta_{-1 / 2}^{m_{1}^{\prime}} \delta_{-1 / 2}^{m_{1}}\left(A_{0} \delta_{1}^{m_{2}^{\prime}} \delta_{1}^{m_{2}}+\left(A_{0}+[2] A_{1}\right) \delta_{0}^{m_{2}^{\prime}} \delta_{0}^{m_{2}}+\left(A_{0}+[2] A_{1}\right.\right. \\
& \left.\left.+[2]^{2} A_{2}\right) \delta_{-1}^{m_{2}^{\prime}} \delta_{-1}^{m_{2}}\right)+\delta_{1 / 2}^{m_{1}^{\prime}} \delta_{-1 / 2}^{m_{1}}\left(\left(B_{1}+[2] B_{2}\right)[2]^{1 / 2} \delta_{0}^{m_{2}^{\prime}} \delta_{1}^{m_{2}}\right. \\
& \left.+[2]^{1 / 2} B_{1} \delta_{-1}^{m_{2}^{\prime}} \delta_{0}^{m_{2}}\right)+\delta_{-1 / 2}^{m_{1}^{\prime}} \delta_{1 / 2}^{m_{1}}\left(\left(C_{1}+[2] C_{2}\right)[2]^{1 / 2} \delta_{1}^{m_{2}^{\prime}} \delta_{0}^{m_{2}}\right. \\
& \left.+[2]^{1 / 2} C_{1} \delta_{0}^{m_{2}^{\prime}} \delta_{-1}^{m_{2}}\right), \tag{13}
\end{align*}
$$

where the coefficients are determined to be two sets:

$$
\begin{align*}
& A_{0}=q^{-2}(Q-q), \quad A_{1}=[2]^{-1}\left(q^{-1}-q^{-2}\right)(Q-q), \quad A_{2}=[2]^{-2}\left(1-q^{-1}\right)(Q-q), \\
& C_{1}=C_{2}=0, \quad B_{1}=[2]^{-1 / 2}\left(q_{2}-\left\{\left(1-q^{-2}\right)\left(q^{2}-q^{-2}\right)\right\}^{1 / 2}\right), \quad B_{2}=q_{1}-q_{2} \\
& q_{1} q_{2}=q^{-1} Q\left(1-q^{-2}\right)\left(q^{2}-q^{-2}\right) \tag{14}
\end{align*}
$$

and

$$
\begin{align*}
& A_{0}=\tilde{Q}-q^{-1}, \quad A_{1}=[2]^{-1}(q-1)\left(\tilde{Q}-q^{-1}\right)^{1}, \quad A_{2}=(1-q)(\tilde{Q}+1), \\
& B_{1}=[2]^{-1 / 2}\left\{\left(1-q^{-2}\right)\left(q^{2}-q^{-2}\right)\right\}^{1 / 2}, \quad B_{2}=[2]^{-1} \tilde{q}_{1} \tag{15}\\
& C_{1}=[2]^{-1 / 2} \tilde{q}_{2}, \quad C_{2}=-[2]^{3 / 2} \tilde{q}_{2}, \quad \tilde{q}_{2}=-q \tilde{q}_{1}
\end{align*}
$$

where Q, q_{1}, \tilde{Q} and \tilde{q}_{1} are arbitrary complex parameters. Equations (14) and (15) define two non-standard $R^{\frac{1}{2} j}$ matrices respectively

$$
\begin{gather*}
R^{1 / 21}(I)=\left[\begin{array}{cccccc}
q & & & & & \\
& 1 q_{1} & & & \\
& 0 & q^{-2} Q & & & \\
& & & q^{-1}, & q_{2} & \\
& & & & q^{-1} Q & \\
& \vdots & & & & \\
&
\end{array}\right], \tag{16}\\
R^{1 / 21}(I I)=\left[\begin{array}{llllll}
q & & & & \\
& 1 & \tilde{q}_{1} & & & \\
& 0 & \tilde{Q} & & & \\
& & & q & 0 & \\
& & & \tilde{q}_{2} & q \tilde{Q} & \\
& & & & & Q
\end{array}\right] . \tag{17}
\end{gather*}
$$

When

$$
\begin{equation*}
Q=q, q_{1}=q_{2}=\left\{\left(1-q^{-2}\right)\left(q^{2}-q^{-2}\right)\right\}^{1 / 2}, \tag{18}
\end{equation*}
$$

non-standard $R^{1 / 21}$ matrix $R^{1 / 21}(\mathrm{I})$ is reduced to the standard one $\bar{R}^{1 / 21}$ and thus $R^{1 / 21}(\mathrm{I})$ can be regarded as a three-parameter deformation of the standard R-matrix.

Finally, it is pointed out that there is no braid group representation corresponding to the $R^{j} j^{\prime}$ matrix when $j \neq j^{\prime}$ and the non-standard $R^{j} j^{\prime}$ matrices can also be Yang-Baxterized by our general scheme. ${ }^{6}$

References

[1] C. N. Yang, Phys. Rev. Lett. 19 (1967) 1312; R. J. Baxter, Exactly Solvable Models in Statistical Mechanics (Academic Press, London, 1982); C. N. Yang and M. L. Ge, (ed.) Braid Group, Knot Theory and Statistical Mechanics (World Scientific, Singapore, 1989).
[2] V.G. Drinfeld, Proc. IMC., Berkely: 1986, p. 798.
[3] M. Jimbo, Lett. Math. Phys. 10 (1985) 63; 11 (1986) 247; Commun. Math. Phys. 102 (1986) 537.
[4] N. Yu. Reshetikhin, Preprint LOMI E-9-88, 1988.
[5] V.F. Jones, Inter. J. Mod. Phys. B4 (1990) 701.
[6] M. L. Ge, L. H. Gwa, F. Piao and K. Xue, J. Phys. A 23 (1990) 2273; M. L. Ge, Y.S. Wu and K. Xue, Inter. J. Mod. Phys. 6A (1991) (in press).
[7] L. H. Kauffman, Ann. Math. Studies 115 (1988) 1.
[8] M. L. Ge, L. Y. Wang, K. Xue and Y.S. Wu, Inter. J. Mod. Phys. A 4 (1989) 3351; M. L. Ge, L. Y. Wang, Y. Q.Li and K. Xue, J. Phys. A 23 (1990) 605; M. L. Ge, Y. Q.Li and K. Xue, J. Phys. A 23 (1990) 619; M. L. Ge, L.Y. Wang and X.P. Kong, J. Phys. A 24 (1990) 569; M. L. Ge, L. H. Gwa and K. Xue, J. Phys. A 23 (1990) 2273.
[9] M. L. Ge, C. P. Sun, L. Y. Wang and K. Xue, J. Phys. A 23 (1990) L 645.
[10] C. P. Sun and H. C. Fu, J. Phys. A 22 (1989) L 983.

[^0]: -Supported in part by the National Natural Science Foundation of China.

