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1. The NHM effect

The hyperfine interaction between the electron and the nucleus can be written as a summation over the scalar
product of two irreducible tensor operators [S1]

VHF =
∑

τ=E,M

∑
lm

4π

2l + 1
(−1)mM(τl−m)

n · N (τlm)
e , (S1)

where M(τl)
n is the nuclear multipole moment operator of type τ (E for electric, M for magnetic) and rank l, and

N (τl)
e is the multipole transition operator for the electron. They can be written as

M(Elm)
n =

∫
ρnr

lYlm(θ, φ) dτ, (S2)

M(Mlm)
n = − i

c(l + 1)

∫
jn ·L

[
rlYlm(θ, φ)

]
dτ, (S3)

N (Elm)
e =

∫
ρe

rl+1
Ylm(θ, φ) dτ, (S4)

N (Mlm)
e = − i

cl

∫
je ·L [Ylm(θ, φ)]

rl+1
dτ. (S5)

In the above formulas ρ, j,L represent the charge density operator, current density operator, and angular momentum
operator, respectively.

It is convenient to use the basis of total angular momentum states, coupled by the 1s electron with angular
momentum J = 1/2 and the nucleus with angular momentum I:

|F,mF ; J, I〉 =
∑

mI ,mJ

CF,mF

J,mJ ,I,mI
|J,mJ〉 ⊗ |I,mI〉, (S6)

where CF,mF

J,mJ ,I,mI
is a Clebsch-Gordan coefficient, F is the total angular momentum quantum number, mI and mF

are the magnetic quantum numbers of I and F . In 229Th89+, the hyperfine interaction splits the nuclear ground state
(Igs = 5/2) into two levels with F = 2 and F = 3, and the isomeric state (Iis = 3/2) into two levels with F = 2 and
F = 1.

With Eqs. (S1-S6) and the Wigner-Eckart theorem [S2], the matrix elements of VHF can be written as

〈F,mF ; J, I|VHF|F
′
,m

′

F ; J, I
′
〉

=δFmF ,F
′m

′
F

(−1)J+I+F
∑
τl

4π

2l + 1

J I F

I
′
J l

 〈I||M(τl)
n ||I

′
〉〈J ||N (τl)

e ||J〉.
(S7)

The electronic reduced matrix elements 〈J ||N (τl)
e ||J〉 are calculated using the electron wave function, whereas the

nuclear reduced matrix elements 〈I||M(τl)
n ||I ′〉 are obtained by relating them to established nuclear multipole moments

and reduced transition probabilities. Taking magnetic dipole as an example, the nuclear magnetic moments

µI =

√
4π

3
CI,II,I,1,0

〈I||M(M1)
n ||I〉√

2I + 1
, (S8)
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and reduced transition probabilities

B(M1; I
′
→ I) =

∣∣∣〈I||M(M1)
n ||I ′〉

∣∣∣2
2I ′ + 1

(I 6= I
′
). (S9)

The nuclear magnetic moments have experimental values µgs = 0.360 µN [S3], µis = −0.376 µN [S4], with µN being
the nuclear magneton. The reduced transition probabilities are adopted from numerical calculation results of Minkov
and Pálffy [S5] with B(M1; is→ gs) = 0.008 and B(E2; is→ gs) = 42.9 in Weisskopf units.

According to Eq. (S7), states with the same quantum numbers F and mF have non-zero non-diagonal elements,
i.e., these states are mixed. The mixing effect becomes clearer by diagonalizing the matrix of VHF to obtain the
eigenstates of the system, which has been shown in Eq. (1) in the main text. The mixing coefficient b is calculated
to be −0.03066.

2. Light-nucleus interaction

Here we present more details on the interaction between the intense laser pulse and the 229Th89+ ion. The Hamil-
tonian of this laser-nucleus-electron system can be written as

H = H0 +HI(t) = He +Hn + VHF +HI(t), (S10)

where HI(t) is the interaction Hamiltonian with the laser:

HI(t) = −1

c

∫
[je(r) + jn(r)] ·A(r, t) dτ. (S11)

The vector potential of the laser field is written as

A(r, t) =
ε

2
A0fA(t)ei(k·r−ωt) + c.c., (S12)

where ε is the polarization vector, A0 and fA(t) are the amplitude and envelope function of the vector potential. k
and ω are the wave vector and frequency. The vector potential can be expanded in multipole series [S6]

Aν(k; r) =êνe
ik·r

=− ν
√

2π
∑
lm

√
2l + 1ilDl

mν(φ, θ, 0) [Alm(k; r,M) + iνAlm(k; r, E)] , (S13)

where êν is a spherical vector, ê0 = ẑ, ê±1 = ∓ 1√
2

(x̂± iŷ). Dl
mν(φ, θ, 0) denotes the Wigner-D function and (θ, φ)

gives the direction of wave vector k. Alm(k; r, τ) are transverse vector spherical harmonics

Alm(k; r,M) =
1

h̄
√
l(l + 1)

L [jl(kr)Ylm(r̂)] , (S14)

Alm(k; r, E) =
−i

h̄k
√
l(l + 1)

∇×L [jl(kr)Ylm(r̂)] . (S15)

Using Eqs. (S11-S15) and the long wavelength limit jl(kr) ≈ (kr)l/(2l + 1)!! characterized by kr � 1, HI(t) can

be written as a linear combination of M(Elm)
n and M(Elm)

e , where the form of M(Elm)
e involves replacing the nuclear

charge density and current density in Eqs. (S2-S3) with those of the electron. Similar to Eq. (S8), the electron

multipole moment is proportional to the reduced matrix element (e.g. µe ∝ 〈J ||M(M1)
e ||J〉). The magnetic dipole

moment operator of the system is m̂ =M(M1)
n +M(M1)

e [used in Eq. (5) of the main text].
The interaction Hamiltonian can also be written in the following form: HI(t) = EIF(t), where EI is a time-

independent interaction energy, and F(t) = fA(t)eiΩt
[
e−iωt − (−1)leiωt

]
/2 is a time-dependent envelope. Here

Ω = ∆E/h̄ is the frequency gap between the two levels under consideration. 0 ≤ fA(t) ≤ 1 is the envelope function of
the vector potential. For l = 1, F(t) = fA(t)eiΩt cosωt, so 0 ≤ |F(t)| ≤ 1. The laser field is assumed to be polarized
along x̂ and propagating along ẑ.
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Taking the transition between |F = 2; down〉 and |F = 2; up〉 for example. Consider the magnetic quantum numbers
of the two states to be {mdown,mup}, then the interaction energy can be written as

EI =E0
5
√

6π

3

∑
ν=±1

 F 1 F

mup ν −mdown

(1− 2b2)〈Iis||M(M1)
n ||Igs〉

 F 1 F

Igs J Iis


+ b
√

1− b2
∑

I=Igs,Iis

〈I||M(M1)
n ||I〉

F 1 F

I J I

+ 〈J ||M(M1)
e ||J〉

F 1 F

J I J


 .

(S16)

With Eqs. (S2-S3), Eqs. (S8-S9), and the Wigner-6j symbols evaluated, Eq. (S16) can be derived into the following
relatively simpler form

EI =E0
5
√

6π

3

∑
ν=±1

 2 1 2

mup ν −mdown


×

[
(1− 2b2)

5
√

3

√
B(M1) + b

√
1− b2

( √
5

2
√

2π
µe −

7

5
√

10π
µgs +

3

2
√

10π
µis

)]
.

(S17)

The transition energies between other levels of 229Th89+ (wavy lines in Fig. 1 of the main text) have similar forms
and are numerically on the same order of magnitude. The electric quadrupole (E2) terms can be neglected due to
the dominance of magnetic dipole (M1) terms.

For the bare nucleus, the electronic current density in Eq. (S11) is zero. The interaction energy can then be
obtained by a similar derivation

EI = E0
4
√
π√
6

∑
ν=±1

 Igs 1 Iis

mgs ν −mis

√B(M1). (S18)

It can be seen from Eq. (S17) and Eq. (S18) that the main difference between 229Th89+ and 229Th90+ is the
presence of the magnetic dipole moment of the 1s electron, which is about three orders of magnitude lager than
the nuclear moments µgs, µis, or

√
B(M1). For the purpose of conciseness in presentation, when we explain the

interaction energy in the main text, we have neglected some detailed coefficients in these two equations.
The time-dependent Schrödinger equation [Eqs. (2-4) in the main text] can be numerically solved with the detailed

terms given in Eqs. (S10-S18). In this study, we employ the Runge-Kutta method with 8th-order and 9th-order pairs
for numerical computations [S7]. This widely adopted method offers both high accuracy and computational efficiency.
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