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1. Theoretical framework of NEEC, NEIES, and NEET

The system’s overall state is described as the product of the nuclear state |IM〉 with quantum

numbers I and M , the electron state |ψ〉, and the photon number state |n〉. The initial and final

states are denoted as i and f :

|i〉 = |IiMi〉 ⊗ |ψi〉 ⊗ |0〉 ,

|f〉 = |IfMf 〉 ⊗ |ψf 〉 ⊗ |0〉 .
(S1)

The interaction Hamiltonian HI is given by [S1]

HI = −1

c

∫
[Jn(r) + Je(r)] ·A(r)dτ +

∫
ρn(r)ρe(r

′)

|r− r′|
dτdτ ′. (S2)

Here, ρn/e and Jn/e denote the charge density and current density of the nucleus or electron, re-

spectively. A(r) is the vector potential of the radiation field. With the aid of multipole expansions,

the interaction matrix element can be expressed as

〈f |HI |i〉 =
∑
λµ

4π

2λ+ 1
(−1)µ

[
〈ψf | N̂E

λµ |ψi〉 〈IfMf | M̂E
λ,−µ |IiMi〉

− 〈ψf | N̂M
λµ |ψi〉 〈IfMf | M̂M

λ,−µ |IiMi〉
]
.

(S3)

In this context, N̂E/M
λµ and M̂E/M

λµ represent electric (labeled by E) or magnetic (labeled by M)

multipole transition operators of the electron and the nucleus, respectively, characterized by the

angular quantum number λ and the magnetic quantum number µ [S1]. The reduced nuclear

transition probability B(E/M ; Ii → If ) is introduced:

B(E/M ; Ii → If ) =
1

2Ii + 1

∑
MiMfµ

| 〈IfMf | M̂M
λ,µ |IiMi〉 |2. (S4)

In this study, the transition from the nuclear ground state to the isomeric state of 235U is predom-

inantly of type E3, and a value of B(E3) = 0.009 W.u. is employed, as given in [S2, S3].
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1.1 Cross sections of NEEC and NEIES

In NEEC (NEIES), the nucleus undergoes excitation as a result of the energy released from

electron free-bound (free-free) transitions. In this study, we utilize Dirac distorted waves (DWs)

to characterize the electron free states, as outlined in Ref. [S4]:

ψ
(±)
pν = 4π

√
ε+ c2

2E

∑
jlm

[Ω∗κm(v)χν ]e±iδjl

 gjl(r)Ωκm(r̂)

−ifjl′(r)Ω−κm(r̂)

 , (S5)

where δjl is the total phase shift of the corresponding partial wave, and the connection between

momentum p and energy ε is given by ε = c
√
p2 + c2. The electron in the initial (final) state is

associated with the + (−) sign for the phase shift. The electron bound states are determined by

the solutions of the Dirac equation [S4]:

ψnκm =

 gnκ(r)Ωκm(r̂)

−ifnκ(r)Ω−κm(r̂)

 , (S6)

where n is the principal quantum number, m is the magnetic quantum number, and κ serves as

a shorthand notation for the total angular quantum number j and the orbital angular quantum

number l as κ = (l − j)(2j + 1). Furthermore, gnκ(r) and fnκ(r) denote the radial wave functions

for the upper and lower components, respectively. The spherical spinors Ωκm are defined as:

Ωκm(r̂) =
∑

ν=±1/2

〈l, 1/2,m− ν, ν|j,m〉Yl,m−ν(r̂)χν , (S7)

where the spinor χν has the two components:

χ1/2 = (1, 0)T , χ−1/2 = (0, 1)T . (S8)

The cross section for NEEC is expressed as

σNEEC(εi) =
1

vi
| 〈f |HI |i〉 |2

Γf
δ2
if + Γ2

f/4

=
4π2

c2

εi + c2

p3
i

k2λ+2
is

[(2λ+ 1)!!]2
B(Eλ; Ii → If )

Γf
δ2
if + Γ2

f/4

×
∑
li,ji

(2ji + 1)(C
jf1/2

ji1/2λ0)2|RifEλ|
2
.

(S9)

In this equation, δif is the energy mismatch between the nuclear and atomic transitions, given

by δif = (εi − εf ) − εis, where εi and εf denote the initial and final energy of the electron. The
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wavenumber corresponding to the nuclear isomeric transition is denoted as kis = Eis/c. Γf is the

linewidth of the final atomic state. C
jf1/2

ji1/2λ0 is a Clebsch-Gordan coefficient:

(C
jf1/2

ji1/2λ0)2 = (2li + 1)(2lf + 1)(2jf + 1)

lf li λ

0 0 0


2

li λ lf

jf
1
2 ji


2

. (S10)

In the expressions involving the parentheses and curly brackets, the six-component entities corre-

spond to the Wigner 3-j and 6-j symbols, respectively. The radial matrix element RifEλ is given by

the integral:

RifEλ =

∫ ∞
0

[gi(r)gf (r) + fi(r)ff (r)]hλ(kisr)r
2dr, (S11)

where hλ is the spherical Hankel function.

When the energy of the incoming electron follows a specific distribution, integrating over the

free electron’s energy becomes necessary. The resonant strength, denoted as SNEEC, turns out to

be a sensible quality:

SNEEC =

∫
dεiσNEEC(εi). (S12)

In Fig. S1, we present the 20 most efficient NEEC channels for 235U ions with charges ranging

from 1+ to 10+. In our calculations the maximum angular quantum number is set to be l = 50,

including over 500 potential excited states.

The cross section for NEIES is given by [S5, S6]

σNEIES(εi) =
8π2

c4

εi + c2

p3
i

εf + c2

pf
B(Eλ; Ii → If )

k2λ+2
is

[(2λ+ 1)!!]2

×
∑

li,ji,lf ,jf

(2ji + 1)(C
jf1/2

ji1/2λ0)2|RifEλ|
2
,

(S13)

where εi and εf denote the initial and final energies of the free electron, respectively, and εi =

εf + εis.

1.2 Excitation rate of NEET

In NEET, the nucleus experiences excitation through electron bound-bound transitions, with

the electron bound states described by Eq. (S6). The NEET transition rate from atomic state i



4

FIG. S1: The resonant strength of NEEC for charge states from 1+ to 10+. The top 20 NEEC channels are

shown for each ionic state. The excitation energy of 235mU is 76.7 eV.

to state f of a Uq+ ion is expressed as [S7]:

W q,i
NEET =

(
1 +

Γi
Γf

)
| 〈f |HI |i〉 |2

δ2
if + (Γf + Γi)2/4

=
4πk2λ+2

is

[(2λ+ 1)!!]2
B(Eλ; Ii → If )(C

jf1/2

ji1/2λ0)2|RifEλ|
2
(

1 +
Γi
Γf

)
1

δ2
if + (Γf + Γi)2/4

.

(S14)

Here, Γi and Γf denote the linewidths of the initial and final atomic states, respectively.

1.3 Broadening effects on NEET

Following laser-cluster interaction, a nanometer plasma is generated, introducing thermal mo-

tions in electrons and ions that result in broadening effects on electron bound states. Consequently,

both Stark broadening and Doppler broadening effects are taken into account in this study. From

Ref. [S8], the Stark width can be expressed as:

ΓS = 9.16× 10−19(1− 0.7N
−1/3
D )(2πc)(n2

i − n2
f )Z1/3

p n2/3
e . (S15)

Here, ND represents the number of particles in the Debye sphere, given by ND = 1.72×109
√
T 3
e /ne.

The parameters ne and Te denote the electron density in cm−3 and the temperature in eV, respec-
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tively. ni (nf ) corresponds to the principal quantum number of the initial (final) state, and Zp

represents the charge of the ion. The Doppler width is determined by the formula [S9]

ΓD = ω0

√
8 ln2

(
kT

Mc2

)
, (S16)

where ω0 represents the central angular frequency and M is the mass of the 235U ion.

The linewidth of the atomic state can be written as Γ = ΓR+ΓS +ΓD, where the natural width

ΓR for an electron bound state is typically on the order of 10−5 eV. In the nanometer-plasma, the

electron density is approximately 1022 − 1023 cm−3 and the temperature ranges from 1 − 10 eV.

The estimated Stark width is 0.1− 1 eV, while the Doppler width is on the order of 10−3 eV. The

Stark width is the dominant contributor to the linewidth of atomic states.

In clusters characterized by high electron density, enhanced broadening facilitates both NEET

and NEEC processes. The energy levels and wave functions of ionic states are computed utilizing

the RADIAL code [S10], employing a Dirac-Hartree-Fock-Slater method. The most efficient NEET

channels for U7+ and U8+ ions are detailed in TABLE S1 and S2. The calculation results of isomer

production yields via NEET in laser-heated clusters will be presented in the following section.

TABLE S1: Major NEET channels in U7+

Transition channel ∆E (eV) V 2
if (eV2) Rate (s−1)

6g 7
2
→ 6p 3

2
1.1×10−2 1.09×10−30 1.01×10−16

6g 9
2
→ 6p 3

2
1.07×10−2 2.87×10−29 2.79×10−15

9f 5
2
→ 5d 3

2
1.34×10−2 6.58×10−23 4.51×10−10

9f 5
2
→ 5d 5

2
6.01×10−3 2.45×10−23 1.47×10−9

TABLE S2: Major NEET channels in U8+

Transition channel ∆E (eV) V 2
if (eV2) Rate (s−1)

8f 7
2
→ 5d 5

2
4.36×10−4 1.59×10−23 1.90×10−8

13d 3
2
→ 6p 3

2
6.92×10−3 1.46×10−21 2.36×10−8

14d 5
2
→ 6p 1

2
5.84×10−3 2.92×10−21 4.79×10−10

14d 5
2
→ 6p 3

2
2.21×10−3 6.49×10−22 1.11×10−10
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2. NEET yield in laser-heated 235U clusters

In the cluster plasma, the probability of an ionic state i is given by the Boltzmann distribution:

pi =
1

G
exp

(
− εi
Te

)
, (S17)

where εi is the energy of state i above the ground state in eV, Te is the temperature in eV, and

G =
∑

j exp(−εj/Te) is the normalization denominator for all accessible states (i.e. the partition

function). The isomer production yield per cluster via NEET can be written as

YNEET = Nion

∫ t

0
dt′
∑
q

Pq(t
′)
∑
i

pq,i(t
′)W q,i

NEET, (S18)

where Nion is the number of 235U ions per cluster (assumed to be 106 in this study). Pq is the

probability to find a 235Uq+ ion in the cluster, and pq,i is the probability for the 235Uq+ ion in the

i state. W q,i
NEET is the NEET rate for the 235Uq+ ion of i state calculated using Eq. (S14).

Fig. S2 shows the isomer production yield per cluster via NEEC, NEIES, and NEET after the

laser-cluster interaction for different wavelengths of 800 nm, 1600 nm, 2000 nm, and 2400 nm. The

laser pulse duration is 30 femtoseconds (fs) FWHM. One sees that for all the cases, NEET is at

least several orders of magnitude lower than NEIES or NEEC.

FIG. S2: Isomer production yield per cluster through NEEC, NEIES, and NEET at time 5 ps. The

laser intensity varies from 1015 to 1017 W/cm2, while the pulse duration is maintained at 30 fs. The laser

wavelengths are as labeled on each figure: (a) 800 nm, (b) 1600 nm, (c) 2000 nm, and (d) 2400 nm.
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3. Photoexcitation processes

In addition to electron-nucleus interactions, photoexcitation processes also come into play in

laser-heated clusters, including: (1) Direct excitation by the fs laser pulse; (2) Photoexcitation by

blackbody radiations; (3) Photoexcitation by bremsstrahlung. This section explores the effects of

photoexcitation and concludes that the photoexcitation is insignificant in the isomer generation.

3.1 Direct laser excitation

The probability Pif of direct laser excitation can be expressed in terms of the amplitudes bif

for a transition from the nuclear ground state |IiMi〉 to the isomeric state |IfMf 〉, as given by

Pif (t) =
1

2Ii + 1

∑
MiMf

|bif (t)|2. (S19)

The propability amplitude can be expressed as

bif (t) = − i
h̄

∫ t

0
〈IfMf |Hl(t

′)|IiMi〉eiω0t′dt′ , (S20)

where ω0 = εis/h̄ is the transition frequency of the isomeric state. The interaction Hamiltonian

Hl(t) = c−1
∫
dτjn(r) · A(r, t), where jn is the nuclear charge current and A(r, t) is the vector

potential of the laser field. The interaction matrix 〈IfMf |Hl(t)|IiMi〉 can be expressed using

multipole expansions, consisting of electric and magnetic components [S11].

For the magnetic transitions, the matrix element is given by:

〈IfMf |Hl(t)|IiMi〉 = A(t)
√

2π

√
λ+ 1

λ

kλ

(2λ+ 1)!!
C
IfMf

Ii−Miλ0

√
2Ii + 1

√
B(Mλ; Ii → If ) . (S21)

Similarly for the electric transitions, the matrix element is:

〈IfMf |Hl(t)|IiMi〉 = A(t)
√

2π

√
(2λ+ 1)(λ+ 1)

λ

kλ

(2λ+ 1)!!
C
IfMf

Ii−Miλ0

√
2Ii + 1

√
B(Eλ; Ii → If ) ,

(S22)

where A(t) is the time-dependent amplitude of the vector potential and k denotes the photon wave

number.

Assuming a linearly polarized laser pulse with wavelength 800 nm, peak intensity 1016 W/cm2,

and a Gaussian temporal envelope of 30 fs (FWHM in intensity), the calculated photoexcitation

probability is shown in Fig. S3 (a). The excitation probability is found to be on the order of

10−45 for a single nucleus during the laser pulse. Due to the substantial detuning between the

laser photon energy of 1.55 eV and the isomeric energy of 76.7 eV, the calculated laser excitation

probability is so minuscule that the effect of direct laser excitation can be safely neglected.
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FIG. S3: (a) Photoexcitation probability of a single 235U nucleus induced by the fs laser pulse. The laser

has wavelength 800 nm, duration 30 fs, and peak intensity 1016 W/cm2. (b) Photoexcitation probabilities

of a single 235U nucleus through blackbody radiations and bremsstrahlung.

3.2 Photoexcitation by blackbody radiations and by bremsstrahlung

In addition to the laser excitation, photoexcitation via blackbody radiations and

bremsstrahlung, characterized by broad spectra, is also taken into account. Nuclei within the

cluster can undergo excitation through the absorption of photons resonant with the isomeric state.

The photoexcitation cross section is computed using the formula [S12]:

σi→fγ (ε) =
π

2

2If + 1

2Ii + 1
Λ2 ΓγΓt

(ε− εis)2 + Γ2
t /4

, (S23)

where Ii and If are the nuclear spins of the nuclear ground state and nuclear isomeric state,

respectively. Λ = h/εis is the transition wavelength, Γγ is the gamma decay width of the nuclear

isomeric state, Γt is the total decay width, ε is the photon energy, and εis is the isomeric energy.

Then the photoexcitation probability is calculated with:

Wγ =

∫
σi→fγ (ε)φγ(ε, Te)dε ,

=
2If + 1

2Ii + 1
(πΛ)2Γγφγ(εis, Te) , (S24)

where φγ is the photon flux. In the laser-cluster interaction scheme, the temperature is a time-

dependent function and decreases as the cluster expands. Therefore, the photoexcitation proba-

bility for a single 235U nucleus is calculated using Pif (t) =
∫ t

0 Wγ(t′)dt′.

For the case of blackbody radiations, the temperature-dependent photon flux is given by the
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expression:

φblackbody
γ (ε, Te) = cNPlanck

γ (ε, Te) =
ε2

π2c2h̄3[eε/Te − 1]
. (S25)

For the case of bremsstrahlung, the photon flux has the form as a function of electron density ne

and temperature Te [S13]:

φbremsstrahlung
γ (ε, Te, ne) =

∫
dσbremsstrahlung

dε
φe(Ee, Te, ne)dEe , (S26)

where dσbremsstrahlung/dε denotes the bremsstrahlung differential cross section, as defined by for-

mula 3CS(a) in Ref. [S14]. The term φe(Ee, Te, ne) = nef(Ee)ve(Ee) is the electron flux.

Fig. S3(b) shows Pif (t) induced by blackbody radiations and bremsstrahlung, ranging between

10−39 and 10−37, after exposure to a laser pulse with a peak intensity of 1016 W/cm2. The results

indicate that the photoexcitation of nuclei is negligible compared to NEEC.

4. Recombination during nuclear excitation

Recombination processes happen in the laser-generated nanoplasma influencing the ionization

equilibrium and thermal balance. Two dominant recombination processes are considered in this

study, one is radiative recombination (RR) and the other is three-body recombination (TBR).

4.1 Radiative recombination

RR is one of the primary recombination processes, which occurs when an electron recombines

with an ion and emits a photon. The earliest and most prominent RR cross section formula was

given by Kramers [S15]. In the current study, we adopt an improved formula of RR rate coefficient

from Ref. [S16]:

αRR
nl (Zeff ,Θ) '

(
3.43× 10−15

n
+

6.03× 10−14

n2

)
Zeff√

Θ
exp

[
− (l − 0.711− 0.372n)2

0.308 + 0.431n+ 0.0477n2

]
(cm3 · s−1)

(S27)

where n and l are the principal and the angular momentum quantum number of the recombined

ion state, respectively. Θ = Te/Z
2
i Ryd is a parameter related to electron temperature Te and

effective charge Zeff . A simple form of effective charge is Zeff ' (ZC + Zi)/2 for Zi > ZC/2 and

Zeff '
√
ZCZi for Zi < ZC/2, where ZC and Zi are the nuclear core charge and charge of the ion,

respectively.
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For an ion with charge Zi, the RR rate for an electron from free state to a bound state with

quantum number n and l is

ΓRR
nl (ne, Zeff ,Θ) = neα

RR
nl (Zeff ,Θ) (s−1), (S28)

where ne is the electron density in cm−3.

4.2 Three-body recombination

TBR is another important recombination process in plasma dynamics, where two free electrons

interact within the ionic field. In this interaction, as one of the continuum electrons loses its kinetic

energy and is captured, the excess energy released is conveyed to another electron. Hahn derived

an empirical formula for the TBR rate, which is adopted as [S17]:

βTBR(ne, Zi, Te) ' 1.8× 10−4T−1
e n5/6

e niΓGZ
−4
i (cm−3 · s−1), (S29)

where Te represents the electron temperature in Rydberg units, and ni denotes the ion density in

cm−3. Here ΓG is called a Gaunt factor, set to be 2. For an electroneutral plasma, ne = Zini is

satisfied. Eq. (S29) can be witten as

βTBR(ne, Zi, Te) ' 1.8× 10−4T−1
e n11/6

e ΓGZ
−5
i (cm−3 · s−1). (S30)

The TBR rate for an ion with charge Zi is

ΓTBR(ne, Zi, Te) = n−1
e βTBR(ne, Zi, Te), (S31)

' 1.8× 10−4T−1
e n5/6

e ΓGZ
−5
i (s−1). (S32)

TBR often emerges as the dominant mechanism leading to the capture into high Rydberg states.

In high-density plasma, the effects of density-dependent cutoff for high Rydberg states have been

taken into consideration.

4.3 Effects of recombination on ion charge states

Recombination processes are not inherently included in Particle-In-Cell (PIC) simulations. In

this study, we assess the impact of recombination on ion charge states by calculating recombination

rates using the formulas provided in Eq. (S28) and Eq. (S31), along with the density, temperature,

and ion charge data derived from the PIC simulation. These time-dependent RR and TBR rates,
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FIG. S4: (a) Time-dependent recombination rates per ion for U9+ and U10+, corresponding to the tem-

peratures shown in Fig. 1(c) of the manuscript. The laser parameters are: wavelength 800 nm, duration 30

fs, and peak intensity 5 × 1015 W/cm2. (b) Updated time-dependent ion charge states of 235U ions in the

laser-generated cluster plasma. Isomer production yields via NEEC, NEIES, and NEET are presented with

(dashed lines) and without (solid lines) accounting for the effects of recombination: (c) with laser wavelength

800 nm, duration 30 fs, and peak intensity 5× 1015 W/cm2; (d) with laser wavelength 800 nm, duration 30

fs, and peak intensity 1× 1016 W/cm2.

used to correct ion charge states, enable the determination of updated ion charge states that

account for the effects of recombination.

To illustrate the calculation of recombination effects on ion charge states, consider a laser pulse

with an intensity of 5 × 1015 W/cm2 and a duration of 30 fs. The typical electron temperature

within the 235U cluster, as determined by the PIC simulation, is approximately 10 eV, as shown

in Fig. 1(c) of the manuscript. For the predominant ions, U9+ and U10+, the time-dependent RR

and TBR rates are presented in Fig. S4(a), while the updated time-dependent ion charge states

for U9+ and U10+ are illustrated in Fig. S4(b).

The updated time-dependent ion charge states, which account for the effects of recombination,

are now used to calculate isomer production. Figures S4(c) and (d) compare the isomer production

as a function of cluster expansion time, with and without considering recombination effects, and
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they show only minor differences in most cases. This is because nuclear excitation mainly occurs

within the first few hundred fs, during which ionization effects dominate over recombination.
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