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Isomeric excitation of 229Th via scanning tunneling microscope
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The low energy of the isomeric state of the radionuclide thorium-229 (229Th) makes it highly promising
for applications in fundamental physics, precision metrology, and quantum technologies. The direct access
to the isomer state from the ground state has attracted significant attention. Here, we propose a tabletop
approach utilizing the scanning tunneling microscope technique to induce excitation of a single 229Th nucleus.
With achievable parameters, the isomeric excitation rate is advantageous over existing methods, allowing the
excitation and control of 229Th on the single-nucleus level. It offers the unique potential of exciting and detecting
subsequent γ decay from a single nucleus, providing a new direction for future experimental investigation of the
229Th isomeric state.
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I. INTRODUCTION

Thorium-229 (229Th) recently garnered significant atten-
tion due to its low-lying isomeric state [1,2], which is only
8.3 eV above the nuclear ground state [3,4]. It is an ap-
pealing candidate for various applications in constructing
nuclear optical clocks [5–8], detecting temporal variations of
fundamental constants [9–11], measuring gravitational shifts
[12,13], etc. The isomeric state can be obtained from nuclear
decay reactions [4,14,15]. Nevertheless, to allow control and
to facilitate the applications, extensive research efforts have
been made to explore active nuclear-excitation approaches,
using vacuum ultraviolet (VUV) light sources [16–20], high-
energy synchrotron radiations [21,22], laser pulses [23–28],
electrons [29,30], muons [31,32], etc. Currently, experimen-
tal demonstrations are reported with high-energy synchrotron
radiations [22], laser-generated plasmas [24], and VUV
sources [19,20].

In this paper, we propose a completely new experimen-
tal setup using the tabletop scanning tunneling microscope
(STM) to excite the 229Th atomic nucleus to its isomeric
state 229mTh. STM is a powerful imaging technique used in
nanotechnology and surface science [33,34]. With the high
spatial control of a metallic tip of the STM, a single 229Th
atom can be located and controlled, as illustrated in Fig. 1.
The metal tip with radius of curvature Rt is positioned above
a substrate plane with distance d . Both the tip and substrate
are typically made of a noble metal, e.g., silver (Ag) [35,36].
After applying a bias voltage Vb, electrons will tunnel through
the vacuum between the tip and the substrate and excite the
229Th nucleus from the ground state to the isomeric state.
Here, we mainly focus on the excitation of the 229Th nucleus
with the STM.
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The current approach offers advantages of isomeric-
excitation efficiency, precise manipulation, and photon-
detection efficiency. First, a considerable excitation rate is
achievable with STM method. In Table I, we show the com-
parison of the excitation rates among the current method,
laser excitation, and the electron beam excitation. With tip
radius Rt = 0.5 nm, tip-substrate distance d = 0.2 nm, and
bias voltage Vb = −11 V, the isomeric excitation rate is on the
order of 10−3 s−1 in our setup, contrasting with the excitation
rates on the order of 100 s−1 achieved with laser pulse and
electron beam excitation. The detailed comparison process is
shown in Appendix A. Second, the STM allows the precise
focus of electronic current on the level pA to an area of nm
scale [37], and excitation and control of a located single 229Th
nucleus. And the experimental technique of the STM also
allows multiple tips [38,39], which can increase the excitation
rate by one to two orders of magnitude. Finally, the current
tabletop setup enables the application of the experimental
technique of highly efficient luminescence detection with the
detection solid angle about 3 sr [40,41], which is much greater
than the solid angle of about 0.1 sr in the synchrotron radiation
excitation experiment [22]. Efficient photon collection allows
the detection of the weak photon signals from the radiative
decay of 229mTh, and further increases the effective excita-
tion rate. These advantages make the current method highly
promising for achieving excitation, control, and detection of
229Th especially on the single-nucleus level, which is not
achievable with other methods.

II. THEORY OF ISOMERIC EXCITATION USING THE STM

In this part we develop a quantum theory of isomeric exci-
tation particularly for the STM setup. The total Hamiltonian of
the system is H = Hel + Hn + Hint, where Hel(Hn) represents
the Hamiltonian of the tunneling electron (the 229Th nucleus)
and Hint is the interaction between them. The Hamiltonian of
the tunneling electron is Hel = −∇2/2me + V (r), where V (r)
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FIG. 1. Schematic illustration of STM with a single 229Th atom
on a substrate. The STM tip apex is modeled as a sphere with radius
Rt . The position of the 229Th atom (blue dot), just below the center
of the tip, is set as the origin of the coordinate system, and d is the
distance between the tip and substrate. r stands for the position of
the tunneling electron (black dot), and Vb is the bias voltage applied
to the tip and substrate. (b) The energy level diagram at negative bias
voltage. The black lines denote the vacuum level for two electrodes,
and the red lines represent the initial and final electronic states.
μt ≡ μ0 + eVb and μs ≡ μ0 are the Fermi energies of the tip and
the substrate at the bias voltage Vb, where μ0 is the Fermi energy of
the tip and the substrate at zero bias.

is the potential felt by the tunneling electron at the position r
[43,44]. The wave functions are found for different regions as
[43–46]

Hel,t |φk〉 � ξ̃k|φk〉,
Hel,s|ϕn〉 � Ẽn|ϕn〉, (1)

where Hel,t (Hel,s) is the Hamiltonian of the free tip (substrate)
obtained by neglecting the potential in the substrate (tip)
region. |φk〉(|ϕn〉) is the eigenstate of the free tip (substrate)
with ξ̃k ≡ ξk + eVb(Ẽn ≡ En), where ξk (En) is the eigenenergy
with zero bias voltage. Here we neglect the change of the
wave function of the tip induced by the applied voltage [47].
The detailed forms of these wave functions are presented in
Appendix B.

The Hamiltonian of the 229Th atomic nucleus is simplified
as a two-level system Hn = εg|g〉〈g| + εe|e〉〈e|, where |g〉(|e〉)
is its ground (isomeric excited) state with energy εg(εe). We
assume that the energy gap is �eg ≡ εe − εg = 8.338 eV [4].

TABLE I. Comparison of single-nucleon excitation probabilities
found in the literature and their calculated total excitation rates. We
use the density of the Th nuclei 1018 cm−3, the area 1 mm2, and
the target thickness 10 nm to estimate total transition rate of other
methods. In the electron beam excitation, we use the cross sec-
tion 10−25 cm2 under the current 100 µA. And in the laser excitation,
the repetition rate of the laser is 10 Hz.

Excitation probability Total transition rate
Method (s−1 per nucleus) (s−1)

Our paper 10−3 10−3

Electron beam [29,30] 10−10 101

Laser [27,42] 10−11 per pulse 101

The interaction between the electron and nucleus is given
by [48]

Hint = −1

c

∫
J(R) · A(R)dR, (2)

where J(R) is the nucleus current operator at position R.
A(R) is the electromagnetic vector potential generated by the
tunneling electron with current j(r):

A(R) = 1

c

∫
eik|r−R|

|r − R| · j(r)dr, (3)

where kh̄c = (Ẽn − ξ̃k ) corresponds to the energy loss of
the electron. The electron current is obtained as j f i(r) =
−eih̄(ψ f ∇ψ∗

i − ψ∗
i ∇ψ f )/2me [34,45]. And ψi (ψ f ) denotes

the wave function of the initial (final) state of the electron.
For negative bias Vb < 0, the electron flies from the substrate
to the tip, i.e., ψi = ϕn(r) and ψ f = φk (r).

From Fermi’s golden rule, the transition probability per
unit time from an initial state |i〉 to a final state | f 〉 is written
as

Pf i = 2π

h̄
|〈 f |Hint|i〉|2δ(Ei − E f ), (4)

where for the current system |i〉 ≡ |JiMi〉 ⊗ |ϕn〉 and | f 〉 ≡
|Jf M f 〉 ⊗ |φk〉 are the product states of the nucleus and the
electron. Here Ji (Jf ) and Mi (M f ) are the angular momen-
tum and magnetic quantum numbers of the nuclear ground
(isomeric) state, respectively. The initial and final energies are
Ei = εg + Ẽn and E f = εe + ξ̃k .

Here we use multipole expansion [48]:

eik|r−R|

|r − R| = 4π ik
∑
T ,l,m

AT
lm(kR)BT

lm(kr). (5)

The transition type T can be either E (electric) or M
(magnetic). And AT

lm(kR) is the multipole vector poten-
tial, AM

lm(kR) = 1/
√

l (l + 1)L jl (kR)Ylm(R̂) and AE
lm(kR) =

−i/(k
√

l (l + 1))∇ × L jl (kR)Ylm(R̂). Here Ylm(R̂) are spher-
ical harmonics. The potential BT

lm(kr) can be obtained from
AT

lm(kR) by replacing the Bessel function jl (kR) with the
Hankel function of the first kind h(1)

l (kr). Then the transition
matrix element 〈 f |Hint|i〉 turns into [29,30,48]

〈 f |Hint|i〉 =
∑
T

〈 f |HT
int|i〉

= − 4π ik

c2

∑
T ,l,m

∫
J f i(R) · AT

lm(kR)dR

×
∫

j f i(r) · BT
lm(kr)dr. (6)

The first integral in the above equation associated to the
nuclear transition current J f i(R) is derived with the form [29]

∫
J f i(R) · AT

lm(kR)dR = iklc

(2l + 1)!!

√
l + 1

l

× ∣∣〈Jf M f |MT
lm|JiMi〉

∣∣, (7)
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where the nuclear transition matrix element is related to the
reduced probability B(T l; Ji → Jf ) of nuclear transition [29]:

B(T l; Ji → Jf ) = 1

2Ji + 1

∑
Mi,M f ,m

∣∣〈Jf M f |MT
lm|JiMi〉

∣∣2
. (8)

The second integral of Eq. (6), �T l
f i ≡ ∫

j f i(r) · BT
lm(kr)dr, is

associated to the electronic transition and can be deduced into
the following forms:

�El
f i ≈ − eicl√

l (l + 1)

∫
φk (r)ϕn(r)h(1)

l (kr)Ylm(r̂)dr, (9)

�Ml
f i = 0, (10)

where �El
f i is given to the leading order according to the con-

dition kr � 1. Detailed derivations and discussions on �T l
f i

are presented in Appendix C.
The overall transition probability per unit time is obtained

explicitly as

P =
∑
l,m

2π

h̄

(
4πk

c

)2 k2l

[(2l + 1)!!]2

B(El; Ji → Jf )δ(Ei − E f )∫
dEnρs(En)

× l + 1

l (2l + 1)

∑
n,k

Fμ0,T (En)[1 − Fμ0,T (ξk )]
∣∣�El

f i

∣∣2
, (11)

where ρs(E ) [ρt (E )] is the density of state at the substrate
(tip). Fμ0,T (E ) is the Fermi-Dirac distribution of electrons in
tip or substrate state with chemical potential μ0 and tem-
perature T . In an STM experiment, the temperature of the
ultrahigh-vacuum chamber is low enough, typically lower
than 10 K [49,50], that the Fermi-Dirac distribution function
is approximately a Heaviside function, i.e., Fμ0,T (E ) = 1 for
E < μ0 and Fμ0,T (E ) = 0 for E > μ0. The transition proba-
bility per unit time is simplified as

P =
∑
l,m

2π

h̄

(
4πk

c

)2 k2l

[(2l + 1)!!]2

l + 1

l (2l + 1)

B(El; Ji → Jf )∫
dEnρs(En)

×
∫ μ0

μ0+�eg+eVb

dEnρs(En)ρt (ξk )
∣∣�El

f i

∣∣2
, (12)

where ξk = En − �eg − eVb.
Without loss of generality, we consider the material of the

tip and the substrate to be Ag, the density of states of which is
obtained from Ref. [51] (see Appendix D for details). In the
calculation, we use the reduced nuclear transition probability
B(E2; Jf → Ji ) = 27.04 Weisskopf units [52].

III. NUMERICAL RESULTS

Figure 2(a) shows the transition probability P per unit time
as a function of the tip radius Rt , for fixed tip position d = 0.5
nm and applied bias voltage Vb = −11 V. The curve shows
an exponential decay with the increase of the tip radius. In
Eq. (12), the tip radius Rt affects the transition probability via
the interaction strength �El

f i . A larger needle tip radius leads
to a weaker electric field strength at the tip, yielding a lower
isomeric excitation probability. And a smaller tip radius leads
to a higher isomeric transition probability.

FIG. 2. Transition probability per unit time P as a function of tip
radius Rt , distance from the tip to the substrate d , and applied bias
voltage Vb. (a) Dependency of P on Rt , with d fixed at 0.5 nm and Vb

set to −11 V. (b) Dependency of P on d , with Rt fixed at 0.5 nm and
Vb set to −11 V. (c) Dependency of P on Vb, with Rt fixed at 0.5 nm
and d fixed at 0.5 nm. Symbols are numerical results, and curves are
added to guide the eye.

Figure 2(b) presents the dependency of the transition prob-
ability P on the tip-substrate distance d , with Rt fixed at
0.5 nm and Vb set to −11 V. The data show that the transition
probability P decreases exponentially with the increase of d .
This is attributed to the decreasing overlap of wave functions
between the tip and the substrate as the distance increases.
A larger wave-function overlap facilitates electron tunneling
between the tip and substrate, leading to an enhanced isomeric
excitation probability.

Figure 2(c) shows an approximately exponential depen-
dency of the transition probability P on the applied bias
voltage Vb, in which both d and Rt are fixed at 0.5 nm. In
Eq. (12), the bias voltage Vb mainly determines the range of
the energy integration. A higher Vb expands the integration
range, thus allowing a broader range of energy levels to con-
tribute to the isomeric excitation.
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We also considered the impact of positive bias voltage and
small displacements of the tip position relative to the atomic
center on the transition probability. Detailed calculations and
results are provided in Appendixes E and F, respectively.

IV. DISCUSSIONS

For a typical STM setup with tip radius Rt = 0.5 nm, tip-
substrate distance d = 0.2 nm, and bias voltage Vb = −11 V,
the isomeric excitation rate is on the order of 10−3 s−1 per
nucleus. Typically, the 229Th atoms are assumed to be doped
in a wide-band-gap crystal, such as CaF2, to suppress the in-
ternal conversion process [21,53,54]. We would like to remark
that the use of crystals will induce parasitic signals, such as
Cherenkov photon radiation (<200 nm) with energies larger
than 158 keV [55] and luminescence of CaF2 (>200 nm) by
creating electron-hole pairs which form self-trapped excitons
[56]. These parasitic signals post a challenge to detect the
photon signal produced by the gamma decay of the 229mTh.
Yet, experiments [4,19,20] have shown signs of successful
identification of the signal from parasitic signals.

Here the voltage selection is within the bandwidth of a
large-band-gap crystal to prevent damage to the crystal [54].
In traditional STM, the tunneling current is 10−1 pA at a bias
voltage of 2 V and tip-substrate distance of 0.8 nm [57]. For
every 0.1 nm closer to the substrate, the current increases by
one order of magnitude. With 0.2-nm tip-substrate distance,
the current is on the order of μA (1012 electrons per second).
This electron beam would not induce a change in the crystal
structure.

The excitation rate can be further enhanced for the current
STM method. First, wider band-gap crystals allow higher
applied bias voltages and hence higher excitation rates.
Second, smaller tip-substrate distances (without burning out
the crystal) and the excitation with multiple tips allow higher
excitation rate. For example, the excitation rate of 100 s−1

is achieved with the tip radius Rt = 0.3 nm, tip-substrate
distance d = 0.1 nm, bias voltage Vb = −13 V, and the tips
number of 10. Together with the high photon collection
efficiency of the STM, the current method with the STM has
considerable advantage to investigate the 229Th isomer state.

We would like to remark that the experimental detection
of exciting 229Th nuclei via the STM depends not only on
the excitation probability, but also on the deexcitation process
of 229mTh. In addition to emitting photons through gamma
decay, 229mTh may also release energy through inelastic scat-
tering with conduction electrons in the metal substrate without
emitting photons [29]. The actual proportion of different de-
excitation processes in the decay of 229mTh in our system
needs further investigation to ensure the observation of the
excitations.

V. CONCLUSION

In summary, we have proposed a new approach to use
tunneling electrons in an STM to excite the thorium-229 nu-
cleus from the ground state to the low-lying isomeric state.
The tunneling electrons, under an applied bias voltage, pass
through the vacuum between the tip and the substrate and

excite the 229Th nucleus. A comprehensive theoretical frame-
work is developed to calculate the isomeric excitation rate,
and to investigate the dependency of the excitation rate on
key STM parameters, including the tip radius, the tip-substrate
distance, and the applied bias voltage. The calculated single-
nucleus excitation rate is advantageous over existing methods.
More importantly, our method allows nuclear excitation and
control on the single-nucleus level, which is unique among
all existing methods and proposals. The possibility of excit-
ing, controlling, and detecting nuclear radiative decay on the
single-nucleus level points to a completely new territory of
studying nuclear physics as well as quantum optics.
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APPENDIX A: COMPARISON BETWEEN THE CURRENT
STM METHOD AND PREVIOUS APPROACHES

Here, we show the detailed comparison of the excitation
rate among the current method, laser excitation, and electron
beam excitation.

1. Current method with STM

With tip radius Rt = 0.5 nm, tip-substrate distance d = 0.2
nm, and bias voltage Vb = −11 V, the isomeric excitation rate
of our STM method is 10−3 s−1.

2. Electron beam excitation

We consider low-energy electron beam (≈10 eV) exci-
tation [29,30] with cross section σ = 10−25 cm2. With the
density of the nuclei ρN = 1018 cm−3, the target thickness
D = 10 nm, and the current [58] I = 100 µA, the isomeric
excitation rate σρN DI/e is 101 s−1.

3. Laser excitation

We consider direct laser excitation [27,42] with the transi-
tion probability rL = 10−10s−1 per nuclei after a laser pulse
with 5-ns duration. With the density of the nuclei ρN =
1018 cm−3, the laser light focused area S = 1 mm2, the target
thickness D = 10 nm, and f = 10 Hz repetition rate, the
isomeric excitation rate rLρN SD f is 101 s−1.

These excitation rates are listed in Table I in the main text.

APPENDIX B: ELECTRON WAVE FUNCTIONS

In the current discussion, the tip apex is considered as a
metallic sphere with its wave function in the vacuum region
as an asymptotic spherical shape:

φk (r) = Ak
exp[−κk (|r − a| − Rt )]

κk|r − a| , (B1)
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where a = (0, 0, d + Rt ) is the position of the center of the tip
and Rt is the radius of curvature of the tip. κk = √−2meξk/h̄
is the attenuation factor and Ak is the normalization co-
efficient. We choose the area below the needle tip as the
integration area in the later calculation. Assuming the center
of the tip is the origin, i.e., a = 0, we get normalization co-

efficient Ak =
√

κ3
k /π according to normalization conditions∫

dr|φk (r)|2 = 1. This wave function is typical known as the
s wave, which is the simplest case for the tip [47]. The surface
wave function of the bare metal substrate in the vacuum region
takes the form [34,59]

ϕn(r) = Bn exp(−κn|z|), (B2)

where κn = √−2meEn is the attenuation factor and Bn is the
normalization coefficient. Since the wave function of metal
surface waves only exists in the upper half plane (i.e., z > 0),
we obtain Bn = √

2κn according to normalization conditions∫
dr|ϕn(r)|2 = 1. Experiments have shown that the insulating

layer on the metal surface does not change the line shape of
the substrate-photon-emission spectrum but only reduces its
intensity [60].

APPENDIX C: ELECTRON TRANSITION
MATRIX ELEMENT �T l

f i

We get the current j f i(r) of the electron tunneling from the
substrate to the tip as

j f i(r) = −e
ih̄

2me
(φk∇ϕn − ϕn∇φk ). (C1)

With the expression of BE
lm(kr) in the main paper, we calculate

electron transition matrix element �T l
f i :

�El
f i = −i

k
√

l (l + 1)

∫
drj f i(r) · ∇ × Lh(1)

l (kr)Ylm(r̂), (C2)

�Ml
f i = 1√

l (l + 1)

∫
drj f i(r) · Lh(1)

l (kr)Ylm(r̂), (C3)

where kh̄c = Ẽn − ξ̃k is the energy lost by tunneling electrons,
corresponding to the energy gap �eg between the ground state
and the excited state of the nucleus. With the identity ∇ ×
L fl (kr)Ylm(r̂) = i∇{ ∂

∂r [r fl (kr)]Ylm} + ik2r fL(kr)Ylm(r̂) and
the flow conservation equation ∇ · j f i = ikceφkϕn, we get

�El
f i = ic√

l (l + 1)

∫
drρ f i

∂

∂r

[
rh(1)

l (kr)
]
Ylm(r̂)

+ k√
l (l + 1)

∫
drj f i(r) · rh(1)

l (kr)Ylm(r̂), (C4)

where ρ f i = eφkϕn is a densitylike function.
Using the spherical coordinate system for simplicity of

expression, we obtain

�El
f i = − icl√

l (l + 1)

∫
drφkϕnh(1)

l (kr)Ylm(r̂)

+ ick√
l (l + 1)

∫
drrφkϕnh(1)

l−1(kr)Ylm(r̂)

+ ih̄

2me

k√
l (l + 1)

∫
drκnr cos θφkϕnh(1)

l (kr)Ylm(r̂)

FIG. 3. The density of states (DOS) of Ag. μ0 = −4.64 eV is the
fermi energy of Ag.

− ih̄

2me

k√
l (l + 1)

∫
drr2φkϕnh(1)

l (kr)Ylm(r̂)

× 1 + κk|r − a|
|r − a|2

+ ih̄

2me

k√
l (l + 1)

∫
drkr cos θφkϕnh(1)

l (kr)Ylm(r̂)

× 1 + κk|r − a|
|r − a|2 (C5)

and

�Ml
f i = eκn√

l (l + 1)

h̄2

2me

∫
drφkϕn

×
[
κn + (Rt + d )

1 + κk|r − a|
|r − a|2

]
h(1)

l (kr)
∂

∂φ
Ylm(r̂).

(C6)

In our setup, the wave functions φk (r) and ϕn(r) have
no component of angle φ, resulting in the vanishing com-
ponent �Ml

f i ∝ ∫
dφ∂Ylm(r̂)/∂φ = 0, due to ∂Ylm(r̂)/∂φ ∝

−ime−imφ .

APPENDIX D: NUMERAL CALCULATIONS
OF TRANSITION PROBABILITY

In this paper, we consider both the tip and substrate with
the material of the silver (Ag). The density of states of Ag is
presented in Fig. 3, obtained from Ref. [51]. In the numerical
calculation, we select a cylinder with the height d as the
integration area in a cylindrical coordinate system (r, φ, z)
and ensure that the integral converges when the radius of
the cylinder is reached. For the integration of energy En,
we choose the number of energy intervals as 50 to ensure
its convergence, and finally get the transition probability P
in Fig. 2.

Figure 4 shows the transition probability as a function of
tip radius Rt with different applied bias voltage Vb. For small
bias voltages, nonmonotonic curves differing from those in the
main text emerge. This is attributed to the increasing overlap
of wave functions between the tip and substrate as the tip
radius Rt decreasing at a small bias voltage. The larger overlap
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FIG. 4. Transition probability P as a function of tip radius Rt .
The distance d is fixed at 0.5 nm and the applied bias voltage Vb

is set to −10 V for blue solid line and −9.5 V for red dashed line,
respectively.

facilitates electron tunneling between the tip and substrate,
leading to an enhanced transition probability.

APPENDIX E: APPLIED POSITIVE BIAS VOLTAGE

We sketched the design of a single Th atom STM in Fig. 5
with applied positive bias voltage Vb. For positive bias, i.e.,
Vb > 0, the electron runs from the tip to the substrate [see
Fig. 5(b)]. The electron tunneling current is

j+f i(r) = e
ih̄

2me
(φk∇ϕn − ϕn∇φk ), (E1)

which is the inverse of that in negative bias, i.e., j+f i(r) =
−j f i(r). This causes a slight change in �El

f i in Eq. (C5), but
does not change its leading term. In conclusion, a variation in
the applied bias electrode does not result in alteration of the
transition probability P.

APPENDIX F: IMPACT OF THE POSITION OF THE TIP

One of the advantages in the current scheme is the pre-
cise location of the tip to allow the focus of the tunneling
electrons on one single 229Th. Here we consider the im-
pact of the tip position with a small displacement relative
to the center of the atom in the case of negative bias
voltage. We assume the position of the center of the tip

FIG. 5. Schematic diagram of STM of a single 229Th with ap-
plied positive bias voltage Vb. (b) The level diagram for the inelastic
electron scattering mechanism at bias voltage in (a). The symbols are
the same as those in the main paper.

a = (ax, ay, d + Rt ). Using the same calculation method, we
can get

�El
f i = − eicl√

l (l + 1)

∫
drφkϕnh(1)

l (kr)Ylm(r̂)

+ eick√
l (l + 1)

∫
drφkϕnrh(1)

l−1(kr)Ylm(r̂)

+ eih̄

2me

k√
l (l + 1)

κn

∫
drr cos θφkϕnh(1)

l (kr)Ylm(r̂)

− eih̄

2me

k√
l (l + 1)

∫
dr[r2 − r cos θ (Rt + d )]

× φkϕnh(1)
l (kr)Ylm(r̂)

1 + κk|r − a|
|r − a|2

+ eih̄

2me

k√
l (l + 1)

∫
dr[r sin θ cos φax

+ r sin θ sin φay]φkϕnh(1)
l (kr)Ylm(r̂)

1 + κk|r − a|
|r − a|2 .

(F1)

Since kr � 1, the first term is the leading term.
The electron matrix element �Ml

f i is nonzero in this case
because the tip wave function depends on the angle φ. We
give the final expression of �Ml

f i :

�Ml
f i = eκn√

l (l + 1)

h̄2

2me

∫
drφkϕnh(1)

l (kr)
∂

∂φ
Ylm(r̂)

+ e√
l (l + 1)

h̄2

2me

∫
drφkϕn(Rt + d )

1 + κk|r − a|
|r − a|2

× h(1)
l (kr)

∂

∂φ
Ylm(r̂)

− e√
l (l + 1)

h̄2

2me

∫
drφkϕnax

1 + κk|r − a|
|r − a|2 h(1)

l (kr)

×
(

sin φ
∂

∂θ
Ylm(r̂) + cos θ

sin θ
cos φ

∂

∂φ
Ylm(r̂)

)

FIG. 6. Transition probability when the tip center is displaced
relative to the center of the atom.
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− e√
l (l + 1)

h̄2

2me

∫
drφkϕnay

1 + κk|r − a|
|r − a|2 h(1)

l (kr)

×
(

− cos φ
∂

∂θ
Ylm(r̂) + cos θ

sin θ
sin φ

∂

∂φ
Ylm(r̂)

)
.

(F2)

The transition probability as a function of displacement is
presented in Fig. 6. Here we assume ax = ay for simplicity

and set the parameters to d = 0.5 nm, Rt = 0.5 nm, and Vb =
−11 V. Figure 6 shows the impact of displacement on transi-
tion probability. We found that a small displacement does not
affect the results by an order of magnitude compared to when
the tip is directly above, i.e., ax = ay = 0. There is a small rise
here at the beginning because when the tip is directly above,
only the spherical harmonics corresponding to the magnetic
quantum number m = 0 contribute, and when the tip deviates
from directly above, all spherical harmonics contribute.
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