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Nuclear Coulomb excitation is often calculated using a semiclassical (SC) approach, where the projectile
follows classical trajectories and excites the target nucleus through a time-dependent Coulomb interaction. While
the validity of the SC approach has been well established for electric quadrupole (E2) transitions, its accuracy
for higher-order multipole transitions remains insufficiently benchmarked. In this paper, we compare Coulomb
excitation cross sections for higher-order multipole transitions calculated using the SC approach with those
obtained through a quantum mechanical (QM) approach, where the projectile is described by wave functions. For
E2 transitions, the excitation cross sections from both approaches are of the same order of magnitude, consistent
with existing validations. However, for higher-order multipole transitions, the SC approach yields significantly
higher cross sections, deviating possibly by orders of magnitude from the QM results. This discrepancy
underscores the necessity of the QM approach for accurate calculations of the Coulomb excitation cross sections.
The failure of the SC approach is explained through using the Wentzel-Kramers-Brillouin approximation.
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I. INTRODUCTION

Coulomb excitation is a process of inelastic scattering
where a charged particle transfers energy to a target nu-
cleus via electromagnetic interaction [1–6]. Over the past
few decades, Coulomb excitation has been a well-established
method in nuclear physics for exploring nuclear structures,
and much nuclear structural information has been gained
through this method over the years [7–14]. Recently, the use
of radioactive ion beams has revitalized Coulomb excitation
[15–17], enabling the study of short-lived exotic nuclei far
from the β stability line [18–20].

The theoretical framework for Coulomb excitation has
been extensively developed [3,21–24]. Often, a semiclassi-
cal (SC) approach is considered adequate and convenient for
Coulomb excitation calculations [22,23,25], while a quan-
tum mechanical (QM) approach, which involves computing
wave functions for multiple states, is more intricate [26].
In the SC approach, excitation is caused by the electromag-
netic field of the incident particle moving along a classical
trajectory, whereas in the QM approach, excitation arises
from the exchange of a virtual photon between the pro-
jectile and the nucleus. The validity of the SC approach
for electric quadrupole (E2) transitions has been established
[21,22,27–30]: the difference between these two approaches
is shown to be insignificant at least in the regime where
the so-called Sommerfeld parameter η � 1 (shown later).
However, benchmarking the SC approach for higher-order
multipole transitions remains scarce. This article aims to
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address whether the SC approach remains accurate for higher-
order multipole transitions.

Our results indicate that it does not. For high-velocity
incident particles, the cross sections obtained by the SC
approach can deviate significantly from those obtained by
the QM approach, with discrepancies ranging from 1 to 3
orders of magnitude. Quantum effects are therefore crucial
in higher-order multipole Coulomb excitations. We present
a comprehensive analysis based on the Wentzel-Kramers-
Brillouin (WKB) approximation to explain this deviation.

This paper is organized as follows. Section II briefly
introduces the two approaches for calculating Coulomb ex-
citation. Section III presents numerical results and discusses
the validity of the SC approach under different conditions. A
conclusion is given in Sec. IV. For clarity and simplicity, this
paper focuses on electric excitations, and analogous conclu-
sions can be made for magnetic excitations.

II. METHODS

The theory of nuclear Coulomb excitation is well estab-
lished [3,21–24]. Here, we outline the key derivations and
formulas to provide a general understanding of the results
obtained.

A. Semiclassical approach

In the SC treatment of Coulomb excitation, the incident
projectile moves along a Rutherford scattering trajectory and
the target nucleus is excited during the collision. The differ-
ential cross section of nuclear excitation is given by

dσ c = PdσR. (1)
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Here, P is the probability that the nucleus is excited in a col-
lision in which the projectile is scattered into the solid angle
d�, and dσR is the differential cross section of Rutherford
scattering given by

dσR = 1

4
a2

0 sin−4

(
θ

2

)
d�, (2)

where θ is the scattering angle, and a0 = Z1Z2e2/mv2
i is half

the distance of closest approach in a head-on collision. Z1

and Z2 are the charge numbers of the projectile and the target
nucleus, e is elementary charge, and vi and m are the initial
velocity and the mass of the incident particle, respectively.

Averaging over initial states and summing over final states,
the nuclear excitation probability P is given by

P = 1

2Ii + 1

∑
MiM f

|bi f |2, (3)

where bi f is the transition amplitude from initial nuclear state
|i〉 = |IiMi〉 to final state | f 〉 = |I f M f 〉 with Ii (I f ) being the
spin of the initial (final) nuclear state, and Mi (M f ) being
the corresponding magnetic quantum number. The transition
amplitude bi f can be obtained from first-order perturbation
theory as

bi f = 1

ih̄

∫ ∞

−∞
〈I f M f |HI (t )|IiMi〉ei�Et/h̄dt, (4)

where HI (t ) is the Coulomb interaction Hamiltonian between
the moving projectile and the nucleus, and �E is the nuclear
excitation energy. For electric excitations, bi f has the follow-
ing form after expanding HI (t ) into multipole components:

bi f = 4πZ1e

ih̄

∫ +∞

−∞

∞∑
λ=1

λ∑
μ=−λ

1

2λ + 1
Yλμ(θ, φ)

1

rλ+1

× 〈IiMi|ME
λμ|I f M f 〉ei�Et/h̄dt . (5)

In the above formula, ME
λμ is the electric multipole moment

of the nucleus, Yλμ is the spherical harmonic function, and
r = {r(t ), θ (t ), φ(t )} is the time-dependent position of the
projectile from the centroid of the nucleus.

The differential cross section for an Eλ transition can be
given as

dσ c
λ =

(
Z1e

h̄vi

)2

a−2λ+2
0 B(Eλ)

× 4π2

(2λ + 1)3

∑
μ

∣∣∣∣Yλμ

(
π

2
, 0

)∣∣∣∣
2

|Iλμ|2 sin−4

(
θ

2

)
d�,

(6)

where B(Eλ) = ∑
M f μ

|〈IiMi|M(Eλ,μ)|I f M f 〉|2 is the re-
duced nuclear transition probability, and we have introduced

Iλμ(ξ0, ε) =
∫ +∞

−∞
eiξ0(ε sinh w+w)

× (cosh w + ε + i
√

ε2 − 1 sinh w)μ

(ε cosh w + 1)λ+μ
dw, (7)

which is obtained from time integration along the Rutherford
scattering trajectory. The dimensionless quantity ξ0 and tra-
jectory eccentricity ε are defined by

ξ0 = a0�E

h̄vi
, ε = 1

sin(θ/2)
. (8)

Since the SC approach neglects the effect of the energy
loss on the motion of the projectile, the final velocity of the
projectile v f is not included in the calculation. To improve the
accuracy of the SC approach, the cross sections can be sym-
metrized by replacing a0 and ξ0 with symmetrized parameters
a and ξ given by [7]

a = Z1Z2e2

mviv f
, ξ = Z1Z2e2

h̄

(
1

v f
− 1

vi

)
. (9)

The total nuclear excitation cross section of order Eλ, ob-
tained by integrating over all scattering angles, is given by

σ c
λ =

(
Z1e

h̄vi

)2

a−2λ+2B(Eλ)

× 16π3

(2λ + 1)3

∑
μ

∣∣∣∣Yλμ

(
π

2
, 0

)∣∣∣∣
2

×
∫ π

0

∣∣∣∣Iλμ

(
ξ, sin−1

(
θ

2

))∣∣∣∣
2 cos

(
θ
2

)
sin3

(
θ
2

)dθ. (10)

B. Quantum mechanical approach

In the QM approach, the projectile is described by wave
functions, contrasting with the Rutherford scattering trajecto-
ries used in the SC approach. The state of the entire system
is expressed as the product of the nuclear state |IM〉, the
projectile scattering state |k〉, and the photon number state
of the radiation field |n〉. The initial and final states can be
expressed as follows:

|i〉 = |IiMi〉 ⊗ |ki〉 ⊗ |0〉,
| f 〉 = |I f M f 〉 ⊗ |k f 〉 ⊗ |0〉. (11)

The interaction Hamiltonian HI is given by

HI = − 1

c

∫
(jp(r) + jn(r)) · A(r)dτ

+
∫

ρn(r)ρp(r′)
|r − r′| dτdτ ′, (12)

where c is the speed of light, A is the vector potential of the
radiation field, ρn,p and jn,p are the charge density and current
density of the nucleus and the projectile, respectively. For
electric multipole transitions, the matrix element of HI can
be written as

〈 f |HI |i〉 =
∑
λμ

4π

2λ + 1
(−1)μ

× 〈k f |N E
λμ|ki〉〈I f M f |ME

λ −μ|IiMi〉 (13)
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with the notations

N E
λμ = iκλ

cλ(2λ − 1)!!

∫
jp · ∇ × L

[
h(1)

λ (κr)Yλμ(θ, φ)
]
dτ,

ME
λμ = (2λ + 1)!!

c(λ + 1)κλ+1

∫
jn · ∇ × L[ jλ(κr)Yλμ(θ, φ)]dτ.

(14)

Here, L is the angular momentum operator, h(1)
λ is the spher-

ical Hankel function of the first kind, and jλ is the spherical
Bessel function. κ = �E/h̄c is the wave number correspond-
ing to the nuclear excitation energy.

For an Eλ transition, when the projectile velocities vi, f 

c, the differential cross section of nuclear excitation is given
by

dσ
q
λ = m2

4π2h̄4

v f

vi

1

2Ii + 1

∑
MiM f

|〈 f |HI |i〉|2d�

=
(

Z1e

h̄vi

)2

B(Eλ)
4kik f

(2λ + 1)3

×
∑

μ

|〈k f |r−λ−1Yλμ(θ, φ)|ki〉|2d�, (15)

where ki, f = mvi, f /h̄ are the wave numbers of the incident
particle and the ejected particle, respectively. The total excita-
tion cross section obtained by integration over the solid angles
is given by

σ
q
λ =

(
Z1e

h̄vi

)2

B(Eλ)
64π2

(2λ + 1)2
kik f

×
∑
li l f

(2li + 1)(2l f + 1)

(
li l f λ

0 0 0

)2∣∣M−λ−1
li l f

∣∣2
,

(16)

where the radial matrix element M is defined by

M−λ−1
li l f

= 1

kik f

∫ ∞

0
Rl f (k f r)r−λ−1Rli (kir)dr (17)

with Rl (kr) being the radial wave function of the projectile
with orbital angular momentum l . In this paper these wave
functions are calculated using the code RADIAL [31].

To quantify the disparities between the cross sections ob-
tained from the SC approach and QM approach, we introduce
the ratio

Rλ = σ
q
λ

σ c
λ

, (18)

where σ c
λ and σ

q
λ are the SC and QM cross sections from

Eqs. (10) and (16), respectively.

III. RESULTS AND DISCUSSIONS

In this section, we provide numerical results of the ratio Rλ

for different multipole transitions. In the study of Coulomb
excitation, two parameters, η and ξ , are frequently employed.
The Sommerfeld parameter η is related to the initial velocity

FIG. 1. The ratio R2 for E2 transitions, plotted as a function of
1/η for ξ = 0, 0.1, 1.0, 2.0.

of the projectile

η = Z1Z2e2

h̄vi
, (19)

and ξ has been defined in Eq. (9). A larger value of η corre-
sponds to a lower incident velocity of the projectile, whereas a
larger value of ξ represents more energy loss of the projectile
due to Coulomb excitation.

A. SC vs. QM results for E2 transitions

Figure 1 shows the ratio R2 for E2 transitions with ξ values
of 0, 0.1, 1.0, and 2.0 and 1/η ranging from 0 to 1.0. One
sees that the difference between σ

q
2 and σ c

2 is not significant
for 1/η < 1.0, with the deviation reaching up to 30% when
ξ = 0 and 1/η = 1.0. This indicates that the accuracy of the
SC approach is reliable in this range. Similar results are also
seen for E1 transitions [3].

Additional insights include: (1) The ratio R2 reaches its
maximum value of 1.0 as 1/η → 0. This corresponds to the
classical limit, where the initial velocity of the projectile is
low and the distance from the nucleus is kept large due to
the mutual Coulomb repulsion. (2) For the same value of
1/η, R2 increases with the value of ξ . It indicates that the
discrepancy between σ

q
2 and σ c

2 decreases as the excitation
energy increases.

B. SC vs. QM results for higher-order multipole transitions

Figure 2(a) presents the ratio Rλ for E2, E3, E4, and E5
transitions with ξ = 0 and 1/η ranging from 0 to 2.0, demon-
strating the significant influence of the order of multipole
transitions. As the order λ increases, the ratio Rλ quickly de-
creases, indicating larger discrepancies between the SC cross
sections and the QM results. The discrepancy can become as
large as 1 to 3 orders of magnitude. The results are similar for
M2, M3, M4, and M5 transitions as shown in Fig. 2(b).

As mentioned above, the benchmarking of the SC approach
has been mostly confined to E1 and E2 transitions. As far as
we are aware of, the SC approach has not been validated for
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FIG. 2. (a) Rλ for electric multipole excitations with λ = 2, 3, 4,
5, plotted as a function of 1/η for ξ = 0. (b) The ratio of magnetic
multipole excitation cross sections obtained by the QM approach and
those obtained by the SC approach, denoted by R′

λ. The ratio R′
λ is

plotted as a function of 1/η for ξ = 0.

higher order multipole transitions. Furthermore, the collision
parameter η is usually taken to be η � 1.0, a practice gener-
ally valid for heavy nucleus collisions. However, in the context
of high-velocity projectile bombarding light nucleus, η tends
to approach or even fall below 1.0. Hence, it is essential to
take both of these scenarios into account.

C. Examples of comparison: 19F and 83Kr

To gain a clearer understanding of the differences between
σ c

λ and σ
q
λ , we calculate the excitation cross sections for

protons bombarding 19F and 83Kr. 19F has an E2 transition
channel of 1/2+ → 5/2+ with an excitation energy of 197
keV, while 83Kr has an E5 transition channel of 9/2+ →
1/2− with an excitation energy of 41 keV. These two tran-
sitions have both attracted experimental interest [32,33]. The
calculated excitation cross sections are shown in Fig. 3.
For 19F, we use the reduced transition probability from the

FIG. 3. (a) Nuclear excitation cross section of the 197 keV nu-
clear level of 19F by protons, calculated by the SC approach (black
solid curve) and by the QM approach (red dashed curve). (b) Nuclear
excitation cross section of the 41 keV nuclear level of 83Kr by protons
calculated by the SC approach (black solid curve) and by the QM
approach (red dashed curve).

National Nuclear Data Center (NNDC) with B(E2, e → g) =
6.95 W.u. [34]. For 83Kr, since the E5 excitation channel
has not been experimentally measured, we use the Weisskopf
approximation, estimating the reduced transition probability
as B(E5, e → g) = 1 W.u.

Figure 3(a) shows the comparison between the SC and the
QM cross sections for 19F. The discrepancy between σ c

2 and
σ

q
2 gradually increases with rising proton energy. At a proton

energy of 4 MeV, corresponding to a collision parameter of
1/η = 1.4, the SC cross section is about twice the value of the
QM cross section.

Figure 3(b) displays the comparison for 83Kr. Here, the
discrepancy also grows with rising proton energy. At a proton
energy of 10 MeV, corresponding to 1/η = 0.6, the SC cross
section is about an order of magnitude higher than the QM
value. In both cases, the proton energies are sufficiently low,
ensuring that the protons remain outside the target nuclei.
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FIG. 4. Differential cross section of 19F excited by 2 MeV pro-
tons, calculated by the SC approach (black solid curve) and by the
QM approach (red dashed curve).

Additionally, Fig. 4 presents the differential excitation
cross section of 19F excited by protons with an energy of
2 MeV. The differential cross sections obtained through both
approaches exhibit similar trends, except for a difference in
overall amplitude.

D. The WKB approximation and the classical limit

The WKB approximation offers a convenient means of
contrasting the disparities between SC approach and QM ap-
proach [22,35]. Using the WKB-approximated wave function
for the projectile, the radial matrix element of Eq. (17) in the
QM approach can be related to the orbital integral of Eq. (7)
in the SC approach [28,36]:

M−λ−1
li,l f

= kλ−2
0

4ηλ
0

Iλμ0 (ξ, ε0), (20)

where k0 = (ki + k f )/2 and η0 = ak0, and the parameters in
the orbital integral are given by

μ0 = l f − li,

ε0 =
√

η2
0 + (li + μ0/2)(li + 1 + μ0/2)

η0
. (21)

The WKB approximation is valid for η0 > 1. Inserting
Eq. (20) into Eq. (16), the WKB-approximated quantum exci-
tation cross section can be written as

σ
q
λ =

(
Z1e

h̄vi

)2

a−2λ+2B(Eλ)
kik f

k2
0

16π3

(2λ + 1)3

∑
μ

∣∣∣∣Yλμ

(
π

2
, 0

)∣∣∣∣
2

×
∑

li

1

η2
0

Aλμ(li )|Iλμ(ξ, ε0)|2, (22)

FIG. 5. The comparison between d�c
λ/dθ from the SC method

(solid line) and ��
q
λ/�θ from the QM method under WKB approx-

imation (bar graph). All graphs are fixed at ξ = 0. (a) E2 transition
with 1/η0 = 0.1. (b) E2 transition with 1/η0 = 1.0. (c) E3 transition
with 1/η0 = 1.0.
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where

Aλμ(li ) = (2li + 1)(2li + 2μ + 1)

× (2li + μ + λ)!!(2li + μ − λ − 1)!!

(2li + μ − λ)!!(2li + μ + λ + 1)!!
. (23)

To compare the cross sections obtained from the WKB
approximation and the SC approach, it is helpful to define a
dimensionless quantity

�λ = σλ( Z1e
h̄vi

)2
a−2λ+2B(Eλ)

. (24)

�λ for the two approaches are expressed as follows:

�
q
λ = 16π3

(2λ + 1)3

kik f

k2
0

∑
μ

∣∣∣∣Yλμ

(
π

2
, 0

)∣∣∣∣
2

×
∑

li

1

η2
0

Aλμ(li )|Iλμ(ξ, ε0)|2,

�c
λ = 16π3

(2λ + 1)3

∑
μ

∣∣∣∣Yλμ

(
π

2
, 0

)∣∣∣∣
2

×
∫ π

0

cot
(

θ
2

)
sin2

(
θ
2

) |Iλμ(ξ, ε)|2dθ. (25)

The difference between the two results can be clearly seen.
The angular momentum li is related to the deflection angle θ

of the classical orbit by θ = 2 arccot(li/η0). In the classical
limit η0 � 1 and li � 1, the following replacements can be
made:

∑
li

→ η0

2

∫ π

0
dθ sin−2

(
θ

2

)
,

Aλμ(li ) → 2li = 2η0 cot

(
θ

2

)
, (26)

ε0 → ε.

Departing from the classical limit, �
q
λ can deviate substan-

tially from �c
λ, except for a coefficient kik f /k2

0 , which causes
no influence when ξ = 0.

We depict the comparison in Fig. 5, with the solid curve
representing d�c

λ/dθ from the SC approach and the bar graph
indicating ��

q
λ/�θ from the QM approach under WKB ap-

proximation. Figures 5(a) and 5(b) present the comparison
for E2 transition with 1/η0 = 0.1 and 1.0, respectively. For
1/η0 = 0.1, which is closer to the classical limit, the two
results agree closely to each other. For 1/η0 = 1.0, however,
substantial discrepancies can be seen.

Figure 5(c) presents the comparison for E3 transition with
1/η0 = 1.0. Upon comparing Figs. 5(b) and 5(c), it is ev-
ident that the increase in the order of multipole transitions
significantly influences the results. As the order of multi-
pole transitions increases, the disparity between ��

q
λ/�θ and

d�c
λ/dθ remains basically unchanged at small angles θ , while

at large angles ��
q
λ/�θ becomes significantly smaller than

d�c
λ/dθ , resulting in a predominant discrepancy between �c

λ

and �
q
λ . For E4 or E5 transition, a disparity of 1 to 3 orders

of magnitude will emerge.

IV. CONCLUSION

In this paper we re-examine the commonly used SC ap-
proach for nuclear Coulomb excitation. We emphasize that
the validity of the SC approach is established only for E2
transitions. For higher-order nuclear transitions, the accuracy
of the SC approach remains inadequately benchmarked. Our
findings indicate that for these higher-order multipole transi-
tions, the SC approach can deviate significantly—by orders of
magnitude—from QM results. We analyze and elucidate the
shortcomings of the SC approach through the use of the WKB
approximation.
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