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Quantum theory of isomeric excitation of 229Th in strong laser fields
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A general quantum mechanical theory is developed for the isomeric excitation of 229Th in strong femtosecond
laser pulses. The theory describes the tripartite interaction between the nucleus, the atomic electrons, and the
laser field. The nucleus can be excited both by the laser field and by laser-driven electronic transitions. Numerical
results show that strong femtosecond laser pulses are very efficient in exciting the 229Th nucleus, yielding nuclear
excitation probabilities on the order of 10−11 per nucleus per pulse. Laser-driven electronic excitations are found
to be more efficient than direct optical excitations.
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I. INTRODUCTION

Nuclear isomers are nuclear metastable states with rela-
tively long half-lives. They have important applications in
energy storage [1–5], medical imaging [6], nuclear structure
elucidation [7], etc. One of the most fascinating nuclear iso-
mers of substantial recent interest is the 229Th isomer, which
has an extremely low energy of only about 8 eV above the
nuclear ground state [8–17]. It has been proposed as a nuclear
clock [18–26] that may outperform or complement today’s
atomic clocks.

One of the current research focuses is to find efficient meth-
ods to excite the 229Th nucleus from the ground state to the
isomeric state [27–46]. Existing methods or proposals may be
summarized into the following categories: optical excitation
(OE), electronic excitation (EE), or laser-driven electronic
excitation (LDEE). OE using vacuum ultraviolet light around
8 eV is conceptually straightforward, however, several experi-
mental attempts have given negative results [27–30], possibly
due to inaccurate knowledge of the isomeric energy. An
indirect OE method was demonstrated [31] using 29-keV
synchrotron radiations to pump the nucleus to the second
excited state which then decays preferably into the isomeric
state [32]. Several EE processes are discussed and calculated,
including nuclear excitation by inelastic electron scattering
[33–35], by bound electronic transition or by electron capture
[36]. For the LDEE category, electronic bridge (EB) schemes
are most discussed [37–43]. The EB method has not been
experimentally realized due to the requirements on resonant
conditions for both nuclear and electronic transitions.
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The possibility of using strong femtosecond laser pulses
for the isomeric excitation has been considered by us previ-
ously [47,48]. We explain that efficient isomeric excitation
of 229Th can be achieved through a laser-driven electron
recollision process: (i) An outer electron is pulled out by
the strong laser field, (ii) the electron is driven away but
has a probability to be driven back and recollide with its
parent ion core when the oscillating laser field reverses its
direction, and (iii) the recolliding electron excites the 229Th
nucleus from the ground state to the isomeric state. This
electron recollision process is well-known [49–51] and is
the core process underlying strong-field phenomena includ-
ing high harmonic generation [52–54], nonsequential double
ionization [55–57], laser-induced electron diffraction [58–60],
attosecond pulse generation [61–64], etc. Therefore, this
recollision-induced-nuclear-excitation (RINE) process is an
interesting combination of 229Th nuclear physics and strong-
field atomic physics [65,66]. Semiclassical calculations show
that the probability of isomeric excitation is on the order of
10−12 per femtosecond laser pulse per nucleus [48].

In this paper, we go further by developing a quantum me-
chanical theory for the isomeric excitation process by strong
femtosecond laser fields. Such a theory is desirable for a
couple reasons. First, it provides a quantum basis for the
RINE process and benchmarks for our previous semiclassical
calculations. Second, it provides a more complete picture of
isomeric excitation in strong laser fields by including pro-
cesses beyond RINE. The RINE involves only laser-driven
free-free electronic transitions, whereas the quantum theory
also includes intrinsically laser-driven free-bound and bound-
bound electronic transitions. The quantum theory describes
the tripartite interaction between the nucleus, the atomic elec-
trons, and the laser field. It simultaneously encloses OE and
LDEE channels, so direct comparisons between these chan-
nels are possible for given laser parameters.

This paper is organized as follows. In Sec. II, the tripartite
quantum theory is developed. Numerical results of nuclear
excitation probabilities under different laser parameters are
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FIG. 1. Illustration of the tripartite interaction between the nu-
cleus, the atomic electrons, and the laser field. The nucleus can be
excited by both the OE channel and the LDEE channel.

given in Sec. III. Further discussions are given in Sec. IV, and
a conclusion is given in Sec. V.

II. THE QUANTUM THEORY

A. The tripartite interaction

The Hamiltonian of the laser-nucleus-electron system can
be written as

H = He + Hn + Hen + Hel + Hnl , (1)

where the Hamiltonians on the right-hand side are, re-
spectively, for the atomic electrons, the nucleus, the
electron-nucleus coupling, the electron-laser coupling, and the
nucleus-laser coupling. They describe the tripartite interaction
between the nucleus, the atomic electrons, and the laser field,
as illustrated in Fig. 1. The state space of He is the atomic
eigenstate, including both bound and continuum states, which
are denoted by |ϕi〉. The state space of Hn contains the nuclear
ground state |IgMg〉 and the isomeric excited state |IeMe〉. The
electron-nucleus coupling Hen is given as a summation over
irreducible tensor operators [67]

Hen =
∑

τ=E ,M

∑
lm

(−1)mMτ
l−mT τ

lm , (2)

where Mτ
lm is the nuclear multipole moment of type τ (E for

electric, M for magnetic) and rank l . T τ
lm is the corresponding

multipole operator for the atomic electrons and is given by

T E
lm =

√
4π

2l + 1

∫
ρe(r)

rl+1
Ylm(θ, φ)dτ,

T M
lm =

√
4π

2l + 1

∫
i

cl

je(r) · L[Ylm(θ, φ)]

rl+1
dτ, (3)

where Ylm(θ, φ) is spherical harmonics and ρe(r) and je(r) are
charge and current density operators for the electron.

The nucleus-laser coupling is given by

Hnl = −1

c

∫
jn(r) · A(r, t )dτ, (4)

where jn(r) and A(r, t ) are the operators for the nuclear cur-
rent density and laser vector potential, respectively. The vector
potential A(r, t ) satisfies the Coulomb gauge ∇ · A(r, t ) = 0.

Assume the vector potential has the following form:

A(r, t ) = ẑ
2

[w(t )exp(ik · r) + c.c.], (5)

where w(t ) is a temporal function, k and ẑ are the wave
vector and the polarization unit vector. By expanding the vec-
tor potential in vector spherical harmonics, the nucleus-laser
coupling can be rewritten as

Hnl = −
√

4π
∑

τ=E ,M

∑
lm

√
2l + 1(−1)mMτ

l−mCτ
lm , (6)

where Cτ
lm is the multipole expansion coefficient of the vector

potential

CE
lm = ikl−1k0

(2l + 1)!!

√
l + 1

l
[w(t )il−1 + c.c.]

ẑ
2

· AE
lm(k̂) ,

CM
lm = −ikl

(2l + 1)!!

√
l + 1

l
[w(t )il + c.c.]

ẑ
2

· AM
lm(k̂) . (7)

Here k0 = ω0/c with ω0 the nuclear energy gap, and k̂ = k/k
is the unit vector along the k direction. Aτ

lm(k̂) is the transverse
vector spherical harmonics [68],

AE
lm(k̂) = k√

l (l + 1)
∇Ylm(k̂),

AM
lm(k̂) = 1√

l (l + 1)
LYlm(k̂), (8)

with the orthonormal relation∫
Aτ

lm(k̂) · Aτ ′∗
l ′m′ (k̂)d	k̂ = δll ′δmm′δττ ′ . (9)

A similar expression for the multipole expansion of the
nucleus-laser coupling has also been given in Ref. [69] by
using rotation matrices.

Similar to the nucleus-laser coupling, the electron-laser
coupling can also be expressed as a summation of multipole
terms. However, the dipole approximation is usually suffi-
cient, in which only the electric dipole interaction is used
to describe the electron dynamics in the laser field. In the
approximation, the electron-laser coupling is written as

Hel = −D · E(t ). (10)

Here D is the dipole moment operator, and E(t ) is the laser
electric field at the position of the atom: E(t ) ≡ E(r = 0, t ) =
−∂A(r = 0, t )/∂t . Note that the dipole approximation in Hel

does not affect the energy exchange mechanism between the
atomic electrons and the nucleus, which is described by Hen

and is of type magnetic dipole (M1) or electric quadrupole
(E2) for 229Th isomers.

B. The nuclear excitation probability

Without the laser field, the Hamiltonian of the nucleus-
electron system is

H0 = He + Hn + Hen, (11)

with eigenstates

H0|�μ,ε〉 = Eμ,ε|�μ,ε〉, (12)
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where μ (ε) denotes the nuclear state (electronic state). For
example, μ = g or e for the nuclear ground state or the
isomeric excited state, and ε = i or f for the initial or the
final electronic state. The eigenstate |�μ,ε〉 can be expanded
using the uncoupled states |IμMμ, ϕε〉 ≡ |IμMμ〉 ⊗ |ϕε〉 using
perturbation theory

|�μ,ε〉 = |IμMμ, ϕε〉 +
∑
μ′,ε′

|Iμ′Mμ′ , ϕε′ 〉

× 〈Iμ′Mμ′, ϕε′ |Hen|IμMμ, ϕε〉
Eε − Eε′ + Eμ − Eμ′

, (13)

where Eε and Eμ are the energy eigenvalues corresponding
to the atomic state |ϕε〉 and nuclear state |IμMμ〉, respec-
tively. One notes from Eq. (13) that due to the presence of
electron-nucleus coupling Hen, the mixing between the nu-
clear ground state and the isomeric state occurs. This is known
as the nuclear hyperfine mixing effect, which is particularly
pronounced in highly charged ions [70–76].

Initially, at time t0, the nucleus-electron system is assumed
to be in its ground state |�g,i〉. Then the probability of nuclear
isomeric excitation at a later time t > t0 is given by

Pexc(t ) =
∑

f

|〈�e, f |U (t, t0)|�g,i
〉|2 , (14)

where U (t, t0) is the time evolution operator in the
Schrödinger picture corresponding to the total Hamiltonian H ,
and the summation runs over all final electronic states.

The time evolution is computationally very demanding
due to the large state space (which comes mostly from the
electronic states). However, one notices that the couplings
of the nucleus to the laser field and to the electrons are
weak. This allows the usage of perturbative treatments for
the laser-nucleus and electron-nucleus couplings, reducing the
computation load substantially. The laser-electron coupling,
in contrast, is very strong and must be treated nonperturba-
tively. Using the time-dependent perturbation theory, the time
evolution operator U (t, t0) becomes

U (t, t0) = U0(t, t0)e−iHn (t−t0 )[1 − iVI (t )], (15)

where VI (t ) is defined by

VI (t ) =
∫ t

t0

e−iHn (t0−t ′ )U0(t0, t ′)(Hen + Hnl )

× e−iHn (t ′−t0 )U0(t ′, t0)dt ′. (16)

In the above expressions, U0(t, t0) is the time evolution oper-
ator corresponding to (He + Hel ).

Substituting Eqs. (13) and (15) into Eq. (14), Pexc(t ) can
be derived into the following form after averaging over initial
nuclear states and summing over final states:

Pexc(t ) = 4π
∑
τ,l

B(τ l, g → e)

(2l + 1)2

∑
f ,m

∣∣Nτ ; f i
lm

∣∣2
. (17)

Detailed derivations of the above equation can be found in
Appendix A. The favorable feature of the above formula is
that the nuclear transitions are packed in B(τ l, g → e) and
the electronic transitions are packed in Nτ ; f i

lm . The former is

the reduced nuclear transition probability

B(τ l, g → e) = 2l + 1

4π (2Ig + 1)

∑
MeMgm

∣∣〈IeMe|Mτ
lm|IgMg

〉∣∣2

and Nτ ; f i
lm , depending only on the electronic initial and final

states, is given by

Nτ ; f i
lm = −i

∫ t

t0

〈
ϕ f (t ′)

∣∣T τ
lm

∣∣ϕi(t
′)
〉
eiω0t ′

dt ′

+ eiω0t
∑

kn

〈ϕ f (t )|ϕn〉
〈
ϕn

∣∣T τ
lm

∣∣ϕk
〉

En − Ek + ω0
〈ϕk|ϕi(t )〉

+ eiω0t0

〈
ϕ f

∣∣T τ
lm

∣∣ϕi
〉

Ei − E f − ω0

+ iδ f i

√
4π (2l + 1)

∫ t

t0

Cτ
lm(t ′)eiω0t ′

dt ′ . (18)

In the above formula, |ϕi/ f (t )〉 is the electronic state evolved
by U0(t, t0) from the state |ϕi/ f 〉. Note that both LDEE and
OE channels emerge. The first three lines of Eq. (18) all con-
tain the (time-dependent) electronic states and they describe
the LDEE channel. As the atomic state space includes both
bound and free states, the contributions from bound-bound,
bound-free, and free-free electronic transitions to the nuclear
excitation are taken into account intrinsically. The last line,
which does not contain electronic states, describes the OE
channel, with the Cτ

lm given in Eq. (7). The OE channel does
not change the electronic state, hence the δ f i.

For the 229Th nucleus, the leading nuclear transitions from
the ground state to the isomeric state are M1 and E2. In our
calculation we use the reduced transition probability values
B(M1, e → g) = 0.005 W.u. and B(E2, e → g) = 30 W.u.,
as predicted recently by Minkov and Pálffy [77].

C. The time-dependent ZORA equation

The dynamics of the atomic electrons driven by a strong
laser pulse has been extensively studied in strong-field atomic
physics. Theoretically, most strong-field phenomena can be
well understood by solving the time-dependent Schrödinger
equation under a single-active-electron (SAE) approximation
[50,51,78–81], which assumes that only the outermost elec-
tron actively responds to the external laser field, with the
remaining electrons contributing a mean-field potential.

The difference between the current work and traditional
strong-field atomic physics is the addition of the nuclear
degree of freedom. We find that this difference makes the
Schrödinger equation insufficient. The main contribution to
nuclear excitation comes from electron wave functions very
close (around 10−2 a.u.) to the nucleus due to the factor
r−l−1 in the electronic operator T τ

lm of Eq. (3). Yet the am-
plitudes of the Schrödinger wave functions, even for low
electron energies, can be very different from those of the Dirac
wave functions in this region due to the high nuclear charge
(Z = 90). Therefore, relativistic effects are important for the
isomeric excitation. A similar conclusion has also been given
in nuclear excitation by inelastic electron scattering [35].

The straight way to calculate the nuclear excitation proba-
bility is to solve the time-dependent Dirac equation, which,
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FIG. 2. Radial wave function of the 7s orbital of the 229Th atom,
calculated by three different Hamiltonians as labeled. The ZORA
wave function is almost identical to the Dirac one, and the two can
barely be visually distinguished.

however, is very time consuming. Here we instead use an
alternative and much more economical approach. We adopt
for He a so-called zero-order-regular-approximation (ZORA)
Hamiltonian [82–84], instead of the Dirac Hamiltonian. The
ZORA Hamiltonian is an effective two-component Hamilto-
nian giving an accurate approximation of relativistic effects:

HZORA = σ · p
1

2 − α2V (r)
σ · p + V (r), (19)

where σ is the Pauli matrix, α is the fine structure constant,
and V (r) is a central potential felt by the electron.

Figure 2 shows the radial wave function of the 7s orbital of
the 229Th atom for the Schrödinger case, the (large component
of the) Dirac case, and the ZORA case. One can see that the
ZORA wave function is almost identical to the Dirac one,
whereas the Schrödinger wave function has smaller ampli-
tudes close to the nucleus, leading to an underestimation of
the nuclear excitation probability up to an order of magnitude.
The potential energy V (r) used in Fig. 2 and in the results
below is calculated by the RADIAL package [85] based on a
self-consistent Dirac-Hartree-Fock-Slater method.

The temporal evolution of the electronic state |ϕi(t )〉 obeys
the time-dependent ZORA equation:

i
∂

∂t
|ϕi(t )〉 = [HZORA + Hel(t )]|ϕi(t )〉 . (20)

The laser electric field is assumed to be linearly polarized
along the z axis with amplitude F0, envelope function f (t ),
and angular frequency ω. Thus, the dipole coupling be-
tween the laser and the active electron is written as Hel(t ) =
zF0 f (t ) sin ωt . Equation (20) is numerically solved using a
generalized pseudospectral method [86–88]. The time prop-
agation of the ZORA equation can be realized using a
split-operator method

|ϕi(t + dt )〉 = exp(−iHZORAdt/2)

× exp[−iHel(t + dt/2)dt ]

× exp(−iHZORAdt/2)|ϕi(t )〉 + O(dt3),
(21)

where dt is the time step. From the above equation, the time
evolution of the wave function from t to t + dt is completed

by three steps: (i) evolution for a half-time step dt/2 in the
energy space spanned by HZORA, and (ii) evolution for one
time step dt in the coordinate space under the influence of
the electron-laser coupling Hel, and (iii) evolution for another
half-time step dt/2 in the energy space spanned by HZORA. In
contrast to Refs. [86–88], here the wave function at time t is
expanded in spherical spinors rather than spherical harmonics
for adapting the ZORA Hamiltonian

|ϕi(t )〉 =
∑

|κ|�Kmax

|Rκ (r, t )〉|	κm(θ, φ)〉, (22)

where |Rκ (r, t )〉 is the (time-dependent) radial wave function,
|	κm(θ, φ)〉 is spherical spinors [68] with quantum number
κ and magnetic quantum number m, and Kmax is an integer
to truncate the orbital angular momentum. Here, m is fixed
due to �m = 0 in the linearly polarized laser field. Spherical
spinors |	κm(θ, φ)〉 are orthonormal,

〈	κm|	κ ′m′ 〉 = δκκ ′δmm′ , (23)

and they satisfy the eigenvalue equation:

(−1 − σ · L)|	κm(θ, φ)〉 = κ|	κm(θ, φ)〉. (24)

The calculation is performed in a spherical box with ra-
dius 150 a.u. and 300 spatial grid points (nonuniform grid,
denser near the origin). The time step is dt = 0.1 a.u. The
orbital angular momentum is truncated at Kmax = 80 in the
partial-wave expansion of Eq. (22). A boundary absorbing
function 1/[1 + exp(br − r0)] with b = 1.25 and r0 = 120
a.u. is used to avoid boundary reflection. The convergency has
been carefully checked by varying the calculation parameters.
The initial state |ϕi〉 for the first, second, third, and fourth
electrons sequentially pulled out by the laser field is the 7s1/2

orbital of the Th atom, the 7s1/2 orbital of the Th+ ion, the
6d5/2 orbital of the Th2+ ion, and the 5 f5/2 orbital of the Th3+

ion, respectively. The magnetic quantum number m is fixed at
1/2.

III. NUMERICAL RESULTS

With the time evolution of the electronic states numerically
solved, we can calculate the nuclear excitation probability
Pexc(t ) using Eqs. (17) and (18). In this section, we present
Pexc(t ) with different laser wavelengths, laser pulse durations,
and laser intensities. Comparisons between OE and LDEE
channels and discussions about effect of uncertainty of the
isomeric energy are also presented.

A. Excitation probability under two wavelengths

Figure 3 shows the nuclear excitation probability Pexc(t )
during a laser pulse for two different laser wavelengths,
namely, 800 nm and 400 nm. For both cases, the laser pulse
has a duration of five optical cycles with a temporal envelop
function f (t ) = sin2(πt/NT ), where T = 2π/ω is the period
and N = 5 is the number of optical cycles. The peak intensity
of the laser pulse is 1014 W/cm2. This intensity has the ability
to drive the outermost three electrons of the Th atom, with
negligible effects on the fourth electron, which lies too deeply
(a higher intensity is needed to drive this electron, as shown
in an example later). Based on the SAE approximation, we
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FIG. 3. Nuclear excitation probability Pexc(t ) during a laser pulse for the first electron (left column), second electron (middle column),
and third electron (right column). Two different laser wavelengths are used, namely, 800 nm (top row) and 400 nm (bottom row). For both
wavelengths, the laser pulse has a sine-squared shape with peak intensity 1014 W/cm2. Separated contributions from the M1 and the E2
channels are also shown, as labeled.

calculate separately the first, second, and third electrons. For
each case, the total excitation probability as well as separated
contributions from the M1 or E2 channels are presented.

With these laser parameters, contributions from the OE
channel are found to be three to four orders of magnitude
lower than those from the LDEE channel. This is due to the
fact that both 800 nm (photon energy 1.55 eV) and 400 nm
(photon energy 3.10 eV) are far off resonance to the nuclear
energy gap of 8.28 eV, albeit with a high intensity. Therefore,
the excitation probabilities presented in Fig. 3 are almost
solely from LDEE. For 800 nm, the end-of-pulse nuclear
excitation probability is about 8.2×10−12, 8.3×10−13, and
6.7×10−14 for the first, second, and third electrons, respec-
tively. The total excitation probability is about 9.1×10−12.
For 400 nm, the end-of-pulse nuclear excitation probability
is about 1.5×10−11, 8.4×10−12, and 3.1×10−12 for the first,
second, and third electrons, respectively. The total excitation
probability is about 2.7×10−11. This is about three times
higher than the 800-nm case.

The relative importance between M1 and E2 varies from
case to case. One sees from the first electron that E2 is more
important than M1 almost for the entire pulse, for both 800 nm
and 400 nm. However, the situation reverses for the second
electron, where M1 dominates during the entire pulse. The
situation for the third electron is different for 800 nm and
400 nm. For 800 nm, M1 dominates most of the time during
the pulse, but near the end of the pulse, the two have almost

equal contributions to nuclear excitation. For 400 nm, in con-
trast, E2 dominates for most of the pulse duration except for
the initial stage. These results have no simple interpretations
but they can be attributed to the dependency of the matrix
element of T τ

lm on the time-dependent electronic states.

B. Excitation with different pulse durations

In Fig. 4, we show the nuclear excitation probability Pexc(t )
with laser pulses of different durations (N = 10 and 15 optical
cycles). The wavelength and intensity of the laser pulses are
fixed at 400 nm and 1014 W/cm2, so this figure is to be
compared with the lower row of Fig. 3, which is for a shorter
pulse of N = 5. The outermost three electrons contribute to
the nuclear excitation and are calculated separately.

For the case of N = 10, the end-of-pulse nuclear excitation
probability is about 3.5×10−12, 7.0×10−12, and 1.5×10−12

for the first, second, and third electrons, respectively. The total
excitation probability is about 1.2×10−11.

For the case of N = 15, the end-of-pulse nuclear excitation
probability is about 2.7×10−12, 7.4×10−12, and 1.7×10−12

for the first, second, and third electrons, respectively. The total
excitation probability is about 1.2×10−11, almost identical to
the N = 10 case. This value is about two times lower than the
N = 5 case shown above (Fig. 3).

Another noticeable difference is that for N = 5, the
first electron contributes the most to the nuclear excitation,
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FIG. 4. Nuclear excitation probability Pexc(t ) during a laser pulse
of duration (a) N = 10 optical cycles and (b) N = 15 optical cy-
cles. The laser wavelength is 400 nm and the peak intensity is
1014 W/cm2. For each case, separated contributions from the out-
ermost three electrons are also shown.

whereas for N = 10 or 15 the second electron contributes the
most. The major difference from the longer pulses is to reduce
the contribution from the first electron (from 1.5×10−11 for
N = 5, to 3.5×10−12 for N = 10 and 2.7×10−12 for N = 15).
Without presenting analyses involving too many details, this
pulse-duration effect can be briefly understood as follows:
The shorter pulse provides a larger bandwidth such that it
drives the first electron to favorable states for the nuclear
excitation. Longer pulses reduce the bandwidth and diminish
electronic transitions to these favorable states. Nevertheless,
the pulse-duration effect is not severe: Under the same peak
intensity, pulses with different durations lead to nuclear exci-
tation probabilities within a factor of 2 or 3.

C. Excitation with different laser intensities

Figure 5 shows the nuclear excitation probability during
two pulses of different peak intensities, namely, 2×1014 and
4×1014 W/cm2. Both laser pulses have wavelength 400 nm
and duration ten optical cycles. With the lower intensity,
the first three electrons contribute to the nuclear excitation,
whereas with the higher intensity, the fourth electron starts to
contribute to the nuclear excitation.

For the lower intensity, the end-of-pulse nuclear excitation
probability is about 6.5×10−12, 6.4×10−12, and 2.5×10−12
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FIG. 5. Nuclear excitation probability Pexc(t ) during a laser pulse
with intensity (a) 2×1014 W/cm2 and (b) 4×1014 W/cm2. The laser
wavelength is 400 nm and the duration is ten optical cycles. For the
higher intensity, the fourth electron starts to contribute to nuclear
excitation.

for the first, second, and third electron, respectively. The total
nuclear excitation probability is about 1.5×10−11.

For the higher intensity, the end-of-pulse nuclear excitation
probability is about 3.5×10−12, 3.0×10−12, 8.0×10−12, and
3.5×10−12 for the first, second, third, and fourth electrons,
respectively. The total nuclear excitation probability is about
1.8×10−11. From Figs. 4(a) and 5, one can see that the total
nuclear excitation probability increases with the laser inten-
sity.

D. OE vs LDEE channels

In all the above results, the LDEE channel dominates the
nuclear excitation, and the OE channel is weaker by three or
four orders of magnitude. As explained, this is because both
800 nm and 400 nm are far off resonant with the nuclear
isomeric energy. The OE channel is important when the laser
frequency is close to the isomeric resonance (8.28 eV = 0.304
a.u.). Figure 6(a) shows a few near-resonant examples for peak
intensity 1014 W/cm2 and pulse duration 20 optical cycles.
The nuclear excitation probability can reach about 10−12 for
exact resonance, but drops in the presence of a detuning.

However, this does not mean that the LDEE channel is
negligible. Figure 6(b) shows the comparison between OE and
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FIG. 6. (a) Nuclear excitation probability Pexc(t ) from the OE
channel for several laser frequencies around the isomeric resonance
(8.28 eV = 0.304 a.u.). The laser peak intensity is 1014 W/cm2.
(b) Nuclear excitation probability Pexc(t ) for the Th2+ ion with laser
frequency 0.300 a.u. (8.16 eV in photon energy) and peak intensity
1014 W/cm2. The OE channel and the LDEE channel lead to compa-
rable nuclear excitation probabilities.

LDEE channels for ω = 0.300 a.u., which is very close to
the resonant frequency. The calculation is performed with the
Th2+ ion. One can see that the two channels are comparable in
this example, and the LDEE channel is even higher. Although
there is no easy way of obtaining intense laser pulses with
photon energies around 8.28 eV, we want to use this example
to emphasize that both OE and LDEE processes exist when
the 229Th atom is radiated by a laser field, and that it would be
dangerous to neglect one of them without doing the calcula-
tions. This is why a theory including both channels in a single
framework is important.

E. Effect of uncertainty of the isomeric energy

In the above calculations, the isomeric energy ω0 is fixed
at 8.28 eV [12]. However, there is still an uncertainty about
0.17 eV in the measurement. To check the influence of such an
uncertainty, the nuclear excitation probability for the Th3+ ion
is calculated using three different isomeric energies, namely,
8.11 eV, 8.28 eV, and 8.45 eV. The results are shown in
Fig. 7. The laser wavelength, pulse duration, and intensity are
400 nm, 10 optical cycles, and 4×1014 W/cm2, respectively.
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FIG. 7. Nuclear excitation probability Pexc(t ) for the Th3+ ion
calculated using three different isomeric energies, as labeled on
figure. The laser wavelength is 400 nm, the peak intensity is
4×1014 W/cm2, and the duration is ten optical cycles.

The end-of-pulse nuclear excitation probability is 9.6×10−12,
3.5×10−12, and 6.1×10−12 for the three isomeric energies, re-
spectively. The nuclear excitation probability remains within
a factor of 3.

We emphasize that the nuclear excitation process in strong
femtosecond laser pulses is very different from that in weak
continuous-wave laser lights. In strong laser fields, the elec-
tron dynamics involves both bound and continuum states, so
the electronic transitions have broad energy distributions. In
continuous laser lights, the electron dynamics involves only a
few (typically two) bound states, so the electronic transitions
have narrow energy distributions. Therefore, excitation meth-
ods based on continuous lights depend very sensitively on the
isomeric energy, whereas our method does not.

IV. DISCUSSION

In Ref. [48], a semiclassical method is used to calculate the
nuclear excitation probability based on the recollision picture
(i.e., the RINE process). A probability of 4×10−12 is obtained
for laser wavelength 800 nm and peak intensity 1014 W/cm2.
In the full quantum calculation given in this paper (Fig. 3), an
excitation probability of 9.1×10−12 is obtained for the same
wavelength and peak intensity, although with a shorter pulse
duration due to the demanding computational load. On the
one hand, this indicates that the semiclassical calculation is
fairly accurate, giving at least the right order of magnitude.
On the other hand, we emphasize that the quantum calcula-
tion includes processes that are absent in RINE. RINE only
includes laser-driven free-free electronic transitions, whereas
the quantum calculation also includes laser-driven free-bound
and bound-bound electronic transitions.

From the quantum calculations in this paper, a strong
femtosecond laser pulse leads to typical nuclear excitation
probabilities on the order of 10−11 per nucleus. This is to be
compared with the 29-keV indirect OE method, which gives
an excitation probability on the order of 10−11 per nucleus
per second [31]. That is, a femtosecond laser pulse generates
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a similar nuclear excitation probability as the (continuous-
wave) 29-keV synchrotron radiation does for one second.

Besides the efficiency, our method has the following ad-
vantages: (i) Precise knowledge of the isomeric energy is not
needed, because the electronic transitions have broad energy
distributions which cover the isomeric energy. (ii) Our method
is relatively easy to implement experimentally, requiring only
tabletop laser systems instead of large facilities. (iii) The exci-
tation is well timed and happens within the short laser pulse.
This may be important for future coherent operations of the
excitation process.

Our theory applies to isolated atoms or vapors. The number
of excited 229Th nuclei from a single laser pulse can be esti-
mated to be Nexc ≈ nVfocPexc, where n is the atomic number
density, Vfoc is the volume of the laser focus, and Pexc ≈ 10−11

is the excitation probability per nucleus. Assuming a Gaussian
beam, the focal volume is given by the formula

Vfoc = 16E2

πλI2τ 2
, (25)

where E is the pulse energy, λ is the wavelength, I is the
peak intensity, and τ is the pulse duration. For a pulse with
E = 0.1 mJ, λ = 400 nm, I = 1014 W/cm2, and τ = 30 fs,
the focal volume Vfoc = 1.4×10−4 cm3. The number density
n depends on how the vapor is produced. Usually it can be
efficiently produced by thermal vaporization using a relatively
weak nanosecond pulse, which do not ionize the metal. The
atomic density is usually n ≈ 1019 cm−3 at the metal surface
but drops with the vertical distance [89,90]. If we use n ≈
1018 cm−3, an order of magnitude smaller than the surface
density, then Nexc can be estimated to be 1.4×103 per pulse.

We emphasize that laser excitation of 229Th involves tri-
partite interactions between the nucleus, the atomic electrons,
and the laser field. Although in this paper we focus on the
interaction of 229Th atoms (ions) with a strong femtosecond
laser pulse, our theory has more general applicabilities: It
provides a general theoretical framework for laser excitation
of atomic nuclei. Our theory is also applicable to nuclear
excitation by a weak continuous laser light. This is an EB
process. We show in Appendix B that our theory agrees with
existing EB results in this situation.

V. CONCLUSION

In this paper, we consider using strong femtosecond laser
pulses to excite the 229Th nucleus. A general quantum me-
chanical framework is developed to describe the tripartite
interaction between the nucleus, the atomic electrons, and
the laser field. The nucleus can be excited both by the laser
field and by laser-driven electronic transitions. Calculations
show that strong femtosecond laser pulses are very efficient
in exciting the 229Th nucleus, leading to excitation proba-
bilities on the order of 10−11 per nucleus per femtosecond
laser pulse. Laser-driven electronic transitions are shown to be
more efficient in exciting the nucleus than the laser field itself.
The natural and interesting combination between strong-field
atomic physics and 229Th nuclear physics leads to a very
efficient nuclear excitation method.
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APPENDIX A: DERIVATION OF EQ. (17)

In this Appendix, we provide more details for the deriva-
tion of Eq. (17). The matrix element 〈�e, f |U (t, t0)|�g,i〉 can
be written in the following form:

〈�e, f |U (t, t0)|�g,i〉
= −i〈IeMe, ϕ f |U0(t, t0)VI (t )|IgMg, ϕi〉

+
∑
ε′

〈IeMe, ϕε′ |Hen|IgMg, ϕi〉
Ei − Eε′ − ω0

〈ϕ f |U0(t, t0)|ϕε′ 〉

+ eiω0(t−t0 )
∑
ε′

〈IeMe, ϕ f |Hen|IgMg, ϕε′ 〉
E f − Eε′ + ω0

× 〈ϕε′ |U0(t, t0)|ϕi〉. (A1)

In obtaining the above expression, we have used the pertur-
bation expansions for the initial state |�g,i〉 and the final state
|�e, f 〉 as given in Eq. (13), and U (t, t0) as given in Eq. (15).
Only first-order terms have been kept.

Using the completeness relation of the electronic states
|ϕε〉, the last line of Eq. (A1) can be written as

∑
ε′

〈IeMe, ϕ f |Hen|IgMg, ϕε′ 〉
E f − Eε′ + ω0

〈ϕε′ |U0(t, t0)|ϕi〉

=
∑
ε′,ε′′

〈IeMe, ϕε′′ |Hen|IgMg, ϕε′ 〉
Eε′′ − Eε′ + ω0

〈ϕε′ |U0(t, t0)|ϕi〉

× 〈ϕ f |U0(t, t0)U †
0 (t, t0)|ϕε′′ 〉. (A2)

The nuclear excitation probability Pexc(t ) can be calculated
by substituting Eqs. (A1) and (A2) into Eq. (14). It is neces-
sary to trace out all final electronic states. In this situation, we
can replace U0(t, t0)|ϕ f 〉 with |ϕ f 〉 by applying the complete-
ness relation of electronic states again. Then Pexc(t ) is given
by

Pexc(t ) =
∑

f

∣∣∣∣ − i〈IeMe, ϕ f |VI (t )|IgMg, ϕi〉

+ 〈IeMe, ϕ f |Hen|IgMg, ϕi〉
Ei − E f − ω0

+ eiω0(t−t0 )

×
∑
ε′,ε′′

〈IeMe, ϕε′′ |Hen|IgMg, ϕε′ 〉
Eε′′ − Eε′ + ω0

× 〈ϕε′ |U0(t, t0)|ϕi〉〈ϕ f |U †
0 (t, t0)|ϕε′′ 〉

∣∣∣∣
2

. (A3)

By using the expression of the electron-nucleus coupling
given in Eq. (2) and the Wigner-Eckart theorem, Eq. (17) can
be obtained.
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APPENDIX B: OBTAINING EB RATE FROM EQ. (17)

Our current paper focuses on describing the nuclear exci-
tation process in a strong femtosecond laser pulse. However,
Eq. (17) is also applicable to nuclear excitation by a weak
continuous laser light. One immediately notices that this is
actually an EB process. Consequently, Eq. (17) should agree
with existing EB results in this limit. This is indeed the case,
as shown below.

Under the condition of a weak continuous laser field, the
time evolution operator U0(t, t0) can be expanded as

U0(t, t0) = e−iHe (t−t0 ) − ie−iHe (t−t0 )

×
∫ t

t0

e−iHe (t0−s)Hel(s)eiHe (t0−s)ds. (B1)

The laser electric field can be taken as the following form:

E(t ) = ẑF0eηt cos ωt, (B2)

where F0 is the field amplitude, ẑ is the polarization direction,
and η is a positive small number. Taking t0 to be −∞, Eq. (B1)
is rewritten as

U0(t, t0) = e−iHe (t−t0 ) + ie−iHet F0

×
∫ t

−∞
eiHesD · ẑeηs cos ωs eiHe (t0−s)ds. (B3)

Substituting the above equation into Eq. (18) and using the
rotating-wave approximation, Nτ ; f i

lm becomes

Nτ ; f i
lm = F0

2

∑
k

[ 〈ϕ f |T τ
lm|ϕk〉〈ϕk|D · ẑ|ϕi〉

η + i(Ek − Ei − ω)

−〈ϕ f |D · ẑ|ϕk〉〈ϕk|T τ
lm|ϕi〉

η + i(E f − Ek − ω)

]

× eηt+i(E f −Ei+ω0−ω)t

η + i(E f − Ei + ω0 − ω)
. (B4)

Only first-order terms have been kept. The nuclear excitation
rate is obtained by

� = lim
η→0

d

dt
Pexc(t ). (B5)

Note that � no longer has a time dependency as η → 0. It
follows from Eqs. (17), (B4), and (B5) that

� = 2π2F 2
0

∑
τ,l,m

B(τ l, g → e)

(2l + 1)2

∣∣∣∣∣
∑

k

[ 〈ϕ f |T τ
lm|ϕk〉

Ek − E f − ω0

×〈ϕk|D · ẑ|ϕi〉 + 〈ϕ f |D · ẑ|ϕk〉
Ek − Ei + ω0

〈ϕk|T τ
lm|ϕi〉

]∣∣∣∣
2

× δ(E f − Ei + ω0 − ω). (B6)

Here, the formula limη→0 2η/(η2 + x2) = 2πδ(x) has been
used. The Dirac delta function can be eliminated by an in-
tegration over the laser angular frequency. For example, the
excitation rate for the M1 transition can be written explicitly
as

� = 64π4Is

9c
B(M1, g → e)

∑
m

∣∣∣∣∣
∑

k

[ 〈ϕ f |T M
1m|ϕk〉

Ek − E f − ω0

×〈ϕk|D · ẑ|ϕi〉 + 〈ϕ f |D · ẑ|ϕk〉
Ek − Ei + ω0

〈ϕk|T M
1m|ϕi〉

]∣∣∣∣
2

, (B7)

where Is = cF 2
0 /32π2 is the spectral intensity. The above rate

is equivalent to the EB excitation rate given in Eq. (1) of
Ref. [38] [which uses the nuclear reduced matrix element
|〈Ig||MM

1 ||Ie〉|2 instead of the reduced transition probability
B(M1, g → e), and averages over initial electronic states and
sums over final electronic states].
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