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Nuclear excitation cross section of 229Th via inelastic electron scattering
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Nuclear excitation cross section of 229Th from the ground state to the low-lying isomeric state via inelastic
electron scattering is calculated, on the level of Dirac distorted wave Born approximation. With electron energies
below 100 eV, inelastic scattering is very efficient in the isomeric excitation, yielding excitation cross sections on
the order of 10−27 to 10−26 cm2. Systematic analyses are presented on elements affecting the excitation cross
section, including the ion-core potential, the relativistic effect, the knowledge of the reduced nuclear transition
probabilities, etc.
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I. INTRODUCTION

The nucleus of 229Th has a unique low-lying isomeric
state with an energy of only about 8.28 eV above the nuclear
ground state. Historically, the existence of this isomeric state
was first suggested by Kroger and Reich in 1976 [1]. The
energy was estimated to be below 100 eV [1], 1 ± 4 eV
[2], 3.5 ± 1.0 eV [3], 7.6 ± 0.5 eV [4], and recently 8.28 ±
0.17 eV [5], with progresses of experimental techniques.
Being the only known nuclear state on the 1-eV order of mag-
nitude (the next lowest nuclear state being the isomeric state
of 235U, which has an energy of 76 eV [6]), the 229Th nucleus
has attracted much attention in recent years for its potential
applications in nuclear optical clocks [7–11], nuclear lasers
[12], checking temporal variations of fundamental constants
[13–15], etc.

The isomeric state can be obtained from α decay of 233U,
with 2% of the resultant 229Th nuclei in the isomeric state. The
disadvantages of this natural way of obtaining the isomeric
state include: (i) low efficiency due to the long half-time
(1.6 × 105 years) and the low branching ratio of the decay
reaction. One can estimate that every 3.6 × 1014 233U nuclei
generate a single 229Th nucleus in the isomeric state in one
second. (ii) The 229Th nuclei are left with a recoil energy of
84 keV into random directions and a variety of ionic states.
Alternatively, the isomeric state can be obtained from β decay
of 229Ac [16], suffering, however, from the low production
yield of 229Ac.

Controllable and efficient approaches of generating the
isomeric state are therefore highly desirable. Direct optical
excitation from the nuclear ground state using vacuum ul-
traviolet light is logically most straightforward. The idea is
to radiate the 229Th nuclei for some time, and then to de-
tect the subsequent fluorescence to see whether it has the
desired half-life decay feature. Several experimental attempts
have been made without success [17–20]. Possible reasons
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include inaccurate knowledge of the isomeric energy, com-
peting fluorescence signals from the electrons with similar
photon energies, competition with nonradiative channels, etc.
An indirect optical excitation scheme was demonstrated ex-
perimentally by Masuda et al. [21], who use narrow-band 29
keV synchrotron radiations to excite the 229Th nuclei from the
ground state to the second excited state, which then decays
preferably into the isomeric state [22]. The probability for
a single 229Th nucleus to be excited to the isomeric state is
estimated experimentally to be on the order of 10−11 per sec-
ond. Excitation approaches exploiting the coupling between
the nuclear and the electronic degrees of freedom have also
been proposed. Schemes based on electronic bridge processes
have been considered for various ionic states or doped-crystal
systems [23–29]. Proposals have also been made using in-
elastic scattering of the electron [30] or laser-driven electron
recollision [31–33].

In the current paper we consider isomeric excitation of
229Th via inelastic electron scattering. Although electronic ex-
citation of nuclei is a common tool in nuclear physics [34–42],
the electron energies are usually high (>1 MeV) due to typical
nuclear energy scales, and little attention has been paid to
low electron energies. In 2020 Tkalya showed that inelastic
scattering of low-energy electrons can be very efficient in
exciting the 229Th nucleus [30]. For electron energies below
100 eV, the isomeric excitation cross sections are shown to be
on the order of 10−27 to 10−26 cm2. The goal of the current
paper is twofold. One is to provide an independent derivation
and calculation on the same subject. We find that Tkalya’s
results have a couple of minor errors, including larger by an
overall factor of two and a confusion of the nuclear transition
direction in the reduced transition probabilities. The other
goal is to provide a detailed analysis on elements affecting
the excitation cross section. These elements include the ion-
core potential, the relativistic effect, the reduced transition
probabilities, etc. We believe that such an analysis is helpful
in understanding the electronic excitation process and the
robustness of the obtained cross sections.
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This paper is structured as follows: In Sec. II we present
a theoretical framework for nuclear excitation via inelastic
electron scattering. The theoretical framework is on the level
of Dirac distorted wave Born approximation. In Sec. III we
present numerical results and discuss dependency of the exci-
tation cross section on several factors, including the existence
or absence of the ion-core potential, the relativistic effect,
the ionic state, and the reduced transition probabilities. A
conclusion is given in Sec. IV.

II. METHOD

Consider an electron, coming from infinity with asymptotic
energy Ei, scattered off a 229Th atom or ion. We consider the
channel that the nucleus gets excited from the ground state
to the isomeric state and the electron leaves with an asymp-
totic final energy E f = Ei − 8.28 eV. We neglect higher-order
channels in which both the nucleus and the atomic (ionic)
electron cloud get excited. The atomic (ionic) electron cloud
just supplies a static mean-field potential for the scattering
electron.

The differential excitation cross section can be obtained by
Fermi’s golden rule (atomic units are used unless otherwise
specified, h̄ = me = e = 1)

dσ

d�
= 2π

vi
ρ(E f )|〈 f |Hint|i〉|2, (1)

where � is the solid angle of the outgoing direction,
vi = pic2/Ei is the asymptotic incoming speed, ρ(E f ) =
p f E f /(8π3c2) is the density of the final states, Ei, f =√

p2
i, f c2 + m2

ec4 is the energy of the initial or the final
state. Including electron spin, averaging over initial states
and summing over final states, Eq. (1) can be written
as

dσ

d�
= EiE f

4π2c4

p f

pi

1

2(2Ii + 1)

∑
MiM f

∑
νiν f

|〈 f |Hint|i〉|2. (2)

Here Ii, f and Mi, f are the total angular momentum and the
magnetic quantum number of the initial or the final state of
the nucleus. ν = ±1/2 represents spin up or spin down of the
electron. Introduce spinor χν :

χ1/2 =
(

1

0

)
and χ−1/2 =

(
0

1

)
, (3)

which are to be used later.
In the matrix element 〈 f |Hint|i〉, the initial state and the

final state are

|i〉 = |IiMi〉 ⊗ |φi〉 ⊗ |0〉, (4)

| f 〉 = |I f M f 〉 ⊗ |φ f 〉 ⊗ |0〉. (5)

That is, the state of the total scattering system is the product
of the states of the nucleus (|IM〉), of the scattering electron
(|φ〉), and of the radiation field (|n〉). The Hamiltonian of the
system can be written as

H = Hn + He + Hrad + Hint, (6)

consisting of the Hamiltonians of the nucleus Hn, of the
scattering electron He, of the radiation field Hrad, and of the

interaction Hint. The latter is given by

Hint = −1

c

∫
[ jn(r) + je(r)] · A(r)dτ

+
∫

ρn(r)ρe(r′)
|r − r′| dτdτ ′, (7)

where the first integral is the couplings between the nuclear
current density jn and the electron current density je with the
vector potential A of the radiation field. The second integral
is the Coulomb interaction between the nucleus and the elec-
tron, with ρn and ρe being the charge density operator of the
nucleus and of the scattering electron, respectively. The vector
potential of the radiation field can be expanded in multipole
components as

A(r) =
∑
λμq

[a(Eλ,μ, q)A(Eλ,μ, q)

+ a(Mλ,μ, q)A(Mλ,μ, q) + H.c.]. (8)

In the above expression, λ,μ, q are the angular momentum
quantum number, magnetic quantum number, and wave num-
ber, respectively, and

A(Eλ,μ, q) =
√

8πc2

λ(λ + 1)R
∇ × L[ jλ(qr)Yλμ(θ, φ)] (9)

A(Mλ,μ, q) = i

√
8πc2q2

λ(λ + 1)R
L[ jλ(qr)Yλμ(θ, φ)], (10)

where R is the radius of the spherical volume under con-
sideration, L is the angular momentum operator, jλ(qr) is a
spherical Bessel function, and Yλμ is the spherical harmonics.
The expansion coefficient a and its conjugate are the operators
for photon annihilation and creation. The matrix elements of
these operators are

〈n|a|n + 1〉 = 〈n + 1|a†|n〉 =
√

n + 1

2qc
, (11)

where |n〉 represents a number state with n photons.
The matrix element of Hint can be derived into the follow-

ing form [43]:

〈 f |Hint|i〉 =
∑
λμ

4π

2λ + 1
(−1)μ

×{〈φ f |N (Eλ,μ)|φi〉〈I f M f |M(Eλ,−μ)|IiMi〉
− 〈φ f |N (Mλ,μ)|φi〉〈I f M f |M(Mλ,−μ)|IiMi〉},

(12)

where M(T λ,μ) and N (T λ,μ) are the electric (T = E )
or magnetic (T = M ) multipole transition operators of the
nucleus and of the electron, respectively:

M(Eλ,μ) = (2λ + 1)!!

κλ+1c(λ + 1)

×
∫

jn · ∇ × L[ jλ(κr)Yλμ(θ, φ)]dτ (13)
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M(Mλ,μ) = −i(2λ + 1)!!

κλc(λ + 1)

×
∫

jn · L[ jλ(κr)Yλμ(θ, φ)]dτ (14)

N (Eλ,μ) = iκλ

cλ(2λ − 1)!!

×
∫

je · ∇ × L[h(1)
λ (κr)Yλμ(θ, φ)]dτ (15)

N (Mλ,μ) = κλ+1

cλ(2λ − 1)!!

×
∫

je · L
[
h(1)

λ (κr)Yλμ(θ, φ)
]
dτ. (16)

In the above formulas κ = �E/c with �E = 8.28 eV being
the energy of the isomeric state, and h(1)

λ (κr) is the spherical
Hankel function of the first kind. By introducing the reduced
nuclear transition probabilities

B(T λ; Ii → I f )

= 1

2Ii + 1

∑
M f Miμ

|〈I f M f |M(T λ,μ)|IiMi〉|2, (17)

the differential cross section becomes

dσ

d�
=4E f Ei

c4

p f

pi

×
∑
λT μ

{
B(T λ; Ii → I f )

(2λ + 1)3

1

2

∑
νiν f

|〈φ f |N (T λ,μ)|φi〉|2
}
.

(18)

Note that we have not specified the detailed forms of
the electronic states |φi〉 and |φ f 〉. As will be shown below,
the choice of the electron wave function has big effects on
the nuclear excitation cross section. In the following part
of this section, we will show forms of excitation cross sec-
tions with different choices of electron wave functions, such
as Schrödinger distorted waves (DWs), Dirac DWs, and Dirac
plane waves (PWs).

A. Schrödinger DWs

Schrödinger DWs |φ〉 ≡ |k〉(±) are eigenstates of the time-
independent Schrödinger equation[

− h̄2

2m
∇2 + V (r)

]
|k〉(±) = E |k〉(±), (19)

and they can be expanded into partial-wave series [43,44]

|k〉(±) =
∑
lm

4π

k
(−1)mile±idElYl,−m(k̂)Yl,m(r̂)Rl (kr). (20)

The initial state (before scattering) takes the plus sign and the
final state (after scattering) takes the minus sign: |φi〉 = |ki〉(+)

and |φ f 〉 = |k f 〉(−) [44]. The total phase shift dEl = δEl + �l

with δEl being the inner phase shift and �l being the Coulomb
phase shift, and Rl (kr) is the radial wave function.

The Schrödinger equation does not contain electron spin,
so Eq. (18) becomes

dσ

d�
= 4E f Ei

c4

p f

pi

×
∑
λT μ

{
B(T λ; Ii → I f )

(2λ + 1)3
|〈φ f |N (T λ,μ)|φi〉|2

}
. (21)

In the nonrelativistic limit the multipole transition operators
of the scattering electron in Eqs. (15) and (16) take simplified
forms

N (Eλ,μ) = − 1

rλ+1
Yλμ(θ, φ), (22)

N (Mλ,μ) = − 1

cλ
L · ∇

[
1

rλ+1
Yλμ(θ, φ)

]
. (23)

With these nonrelativistic simplifications, the total excitation
cross section can be expressed as

σEλ = 64π2

(2λ + 1)2

kik f

v2
i

B(Eλ, Ii → I f )

×
∑
li l f

(2li + 1)(2l f + 1)

(
li l f λ

0 0 0

)2∣∣Mλ+1
li l f

∣∣2
,

(24)

and

σMλ = 64π2(λ + 1)

λ(2λ + 1)

v f

vic2
B(Mλ, Ii → I f )

×
∑
li l f

(2li)
2(li + 1)(2li + 1)(2l f + 1)

×
(

li + 1 l f λ

0 0 0

)2{
λ λ 1

li li + 1 l f

}2

.

× ∣∣Mλ+2
li l f

∣∣2
. (25)

In the above equations the radial matrix element M is defined
by

Mλ+1
li l f

= 1

kik f

∫ ∞

0

[
Rl f (k f r)

1

rλ+1
Rli (kir)

]
r2 dr, (26)

and Mλ+2
li l f

is similarly defined by replacing rλ+1 by rλ+2.

B. Dirac DWs

Dirac DWs |φ〉 ≡ |kν〉(±) are eigenstates of the time-
independent Dirac equation

[−icα · ∇ + βc2 + V (r)]|kν〉(±) = E |kν〉(±), (27)

and they can be expanded into partial-wave series [45,46]

|kν〉(±) = 4π

k

√
E + mec2

2E

×
∑
ηm

[�∗
ηm(k̂)χν]e±idEη

(
gη(r)�ηm(r̂)

−i fη(r)�−ηm(r̂)

)
. (28)
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The initial state (before scattering) takes the plus sign and
the final state (after scattering) takes the minus sign: |φi〉 =
|kiνi〉(+) and |φ f 〉 = |k f ν f 〉(−). The quantum number η is
given by

η = (l − j)(2 j + 1). (29)

For η < 0, l is changed to l ′ = 2 j − l . �ηm are spherical
spinors

�ηm ≡ � jlm =
∑

ν=±1/2

〈l, 1/2, j|m − ν, ν, m〉χν. (30)

The total phase shift dEη = δEη + �η, with δEη and �η being
the inner phase shifts and the Dirac Coulomb phase shifts,
respectively. gη(r) and fη(r) are radial wave functions.

The total excitation cross section is given by

σEλ = 8π2

c4

p f

pi

E f + mec2

p2
f

Ei + mec2

p2
i

×
∑

li, ji,l f , j f

κ2λ+2

(2λ − 1)!!2
B(Eλ, Ii → I f )

× (2li + 1)(2l f + 1)(2 ji + 1)(2 j f + 1)

(2λ + 1)2

×
(

l f li λ

0 0 0

)2{
li λ l f

j f 1/2 ji

}2∣∣MEλ
f i

∣∣2
, (31)

and

σMλ = 8π2

c4

p f

pi

E f + mec2

p2
f

Ei + mec2

p2
i

×
∑

l ′i , ji,l f , j f

κ2λ+2

(2λ − 1)!!2
B(Mλ, Ii → I f )

× (2l ′
i + 1)(2l f + 1)(2 ji + 1)(2 j f + 1)

(2λ + 1)2

×
(

l f l ′
i λ

0 0 0

)2{ l ′
i λ l f

j f 1/2 ji

}2∣∣MMλ
f i

∣∣2
. (32)

The radial matrix elements are given by

MEλ
f i =

∫ ∞

0

{
h(1)

λ (κr)[gi(r)g f (r) + fi(r) f f (r)]r2

−κ

λ
h(1)

λ−1(κr)[gi(r)g f (r) + fi(r) f f (r)]r3

}
dr,

MMλ
f i = ηi + η f

λ

×
∫ ∞

0
h(1)

λ (κr)[gi(r) f f (r) + g f (r) fi(r)]r2dr.

(33)

For κr � 1 the asymptotic form of the spherical Hankel func-
tion h(1)

λ (κr) ≈ −i(2λ − 1)!!/(κr)λ+1 [47] may be used.

C. Dirac PWs

When the potential from the ion core is neglected, the
Dirac DWs reduce to Dirac PWs with the simple form |φ〉 =

|u〉νeik·r, where |u〉ν is the four-component spinor with posi-
tive energy

|u〉ν =
√

E + mec2

2E

(
χν

σ·pc
E+mec2 χ

ν

)
. (34)

The form of χν is given in Eq. (3). It can be shown that
the differential excitation cross sections can be written in the
following concise forms:

dσE2

d�
= 2π

75c2
B(E2, Ii → I f )

K4

k2
i

(
VT + 2

3
VL

)
,

dσM1

d�
= 8π

9c2
B(M1, Ii → I f )

K2

k2
i

VT , (35)

where ki/ f is the initial (final) wave vector of the electron,
and K = ki − k f is the momentum transfer in the scattering
process. VT and VL are wave vector-dependent functions

VT = kik f

(
k2

i + k2
f − κ2

)2
K2 − 2(ki · K )(k f · K )

K2(K2 − κ2)2
,

VL = kik f

2k2
i + 2k2

f + 4c2 − κ2 − K2

K4
. (36)

These formulas have also been given in Ref. [43]. The total
cross section is calculated by integrating the differential cross
section over the solid angle.

D. Calculation of radial wave functions

The calculation of the excitation cross sections eventually
reduces to the calculation of the radial wave functions and the
radial matrix elements [Eqs. (26) and (33)]. In this paper the
radial wave functions are calculated using the code RADIAL

[48]. The electron density distribution ρ(r) of the 229Th atom
or ion is calculated using a Dirac-Hartree-Fock-Slater method
[49,50], and the potential from the electron cloud can be
calculated as

Vel(r) =
∫ ∞

0

ρ(r′)
|r − r′|dr′. (37)

The charge density of the nucleus is modeled by a Fermi
charge distribution

ρn(r) = ρ0

exp[(r − Rn)/z] + 1
, (38)

where Rn = 1.07A1/3 fm with A the mass number, and z =
0.546 fm. ρ0 is a constant, which equals twice the proton
density at r = Rn, and is to be determined by a normalization
condition [51]. The potential energy from the nucleus is given
by

Vnuc(r) = −
∫ ∞

0

ρn(r′)
|r − r′|dr′. (39)

The total potential felt by the scattering electron is V (r) =
Vnuc(r) + Vel(r).
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FIG. 1. Isomeric excitation cross section of 229Th calculated us-
ing Dirac DWs and Dirac PWs, as labeled on figure. For each case,
the total cross section as well as separated contributions from the M1
or the E2 channels are shown.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section we present numerical results and analyze rel-
evant elements affecting the nuclear excitation cross section.
The importance of ion-core potentials on the excitation cross
section can be seen by comparing cross sections calculated
using PWs versus DWs. The importance of relativistic effects
on the excitation cross section can be seen by comparing
cross sections calculated using Dirac DWs versus Schrödinger
DWs. The dependency of excitation cross sections on different
ionic states is also checked. Effect of uncertainties in the
knowledge of the reduced nuclear transition probabilities on
the excitation cross section will be discussed. Although we
mainly focus on cross sections with low electron energies,
we also show results with a much larger energy range to see
how the difference between the DW cross section and the PW
cross section shrinks and disappears with increasing electron
energy. Some further remarks on possible schemes utilizing
electronic excitation of the 229Th nucleus will be given at the
end of this section.

A. DWs vs. PWs

Figure 1 shows the nuclear isomeric excitation cross
sections with Dirac DWs and Dirac PWs. For each case,
separated contributions from the E2 and the M1 channels are
shown, in addition to the total cross section. One sees that
the DWs lead to cross sections about five to six orders of
magnitude higher than the PWs do. For the DW case, the
cross sections are on the order of 10−27 to 10−26 cm2 for
the energy range shown, whereas for the PW case, the cross
sections are on the order of 10−33 to 10−32 cm2. Therefore
wave function distortion has an extremely large effect on the
nuclear excitation cross section.

In addition to the overall magnitude, other differences can
also be seen: (i) The DW cross sections show a quick increase
from the threshold energy of 8.28 eV to about 10 eV, then a
slow decrease for energies above 10 eV. In contrast, the PW
cross sections show an overall increase. (ii) For the DW case,

the M1 channel is higher than the E2 channel, whereas for
the PW case, the E2 channel is higher than the M1 channel.
The difference in the dominant channel between DWs and
PWs is due to distortion of the wave function by the ion-
core potential. Partial-wave components with small angular
momenta are more appreciably distorted, especially the S1/2

(η = −1) wave. The partial-wave transition S(i)
1/2 → S( f )

1/2 is
most significantly enhanced, and this transition only appears
in M1 but not in E2. This is the reason of the M1 dominance
for DWs.

It should be noted that both the DW and the PW results
shown in Fig. 1 are calculated using Eqs. (31) and (32). PW
results are calculated by simply putting V (r) = 0 in the cal-
culation. We have checked that the PW results are identical
to those obtained directly from the analytical formulas of
Eqs. (35) and (36), as would be expected. Note that the cross
section formulas given by Tkalya [30] are larger by an overall
factor of two. They do not agree to the analytical formulas in
the limit V (r) → 0.

B. Dirac DWs vs. Schrödinger DWs

Cross sections (total, as well as separated contributions
from the E2 or the M1 channels) calculated using Dirac DWs
and Schrödinger DWs are compared in Fig. 2(a). One can
see that Dirac DWs lead to excitation cross sections about
an order of magnitude higher than Schrödinger DWs do. This
difference is due to relativistic effects, which turn out to be
quite remarkable.

This result might seem to be rather unexpected at first
glance, since the electron energies considered here are low
(below 100 eV). The remarkable relativistic effect results from
two reasons. One is that 229Th has a large Z = 90. The other
is that it is actually the wave function very close (r < 10−2

a.u.) to the nucleus that contributes dominantly to the radial
integrals in Eqs. (26) and (33). At these distances the Dirac
DWs and the Schrödinger DWs have very different magni-
tudes, as shown in Fig. 2(b). Compared to the nonrelativistic
wave functions, the relativistic wave functions have much
lager amplitudes for r < 10−2 a.u.

One also notices from Fig. 2(a) that for the Dirac case, the
M1 channel is several times higher than the E2 channel, while
for the Schrödinger case, the E2 channel is over an order of
magnitude higher than the M1 channel. This is because in the
Schrödinger case, neglecting the spin of the electron leads
to closure of many partial-wave transitions. And it turns out
that the M1 channel loses more than the E2 channel in this
case, including especially the significant s(i) → s( f ) (l = 0)
transition. This is the reason why the E2 channel dominates
over the M1 channel in the Schrödinger case.

C. Effect of ionic states

Figure 3 displays the nuclear excitation cross sections for
different ionic states, namely, the neutral Th atom, the Th1+,
Th2+, Th3+, and Th90+ ions. The overall feature is that the
nuclear excitation cross section depends rather weakly on the
ionic state. The cross sections for the ionic cases are very
close to each other throughout the whole energy range. A
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FIG. 2. (a) Isomeric excitation cross section of 229Th1+ with
Dirac DWs and Schrödinger DWs, as labeled. Both the total cross
section and separated contributions from the M1 and the E2 chan-
nels are shown. (b) Radial wave functions of the scattering electron
with energy E = 8.3 eV in the potential of the Th1+ ion. Only the
first few partial waves with relatively large amplitudes are shown.
Solid curves are Dirac DWs with η = −1, 1, and dashed curves
are Schrödinger DWs with l = 0, 1. Radial wave functions are nor-
malized at r → ∞ with the condition Rl (kr) → sin(kr + ϕl )/r and
gη(r) → sin(kr + ϕη )/r.

minor exception is the neutral case for energies below about
10 eV. The reason for this weak ionic-state dependency is that
only the electron wave function very close (r < 10−2 a.u.)
to the nucleus contributes dominantly to nuclear excitation,
and almost all electrons are outside this radius. In rare cir-
cumstances, however, the electron cloud may affect the wave
function and the cross section more appreciably, as in the case
of the neutral atom. Similar results have also been reported in
Ref. [30].

D. Uncertainties in the reduced nuclear transition probabilities

The reduced nuclear transition probabilities B(E2/M1) are
determined either from nuclear model calculations [52], for
example in the framework of a quasiparticle-phonon model

FIG. 3. Isomeric excitation cross section of 229Th for different
ionic states, as labeled. The inset zooms in a small energy range
between 11 and 12 eV.

with inclusion of Coriolis couplings [53,54], or from ex-
perimental data analyses [52,55–57] exploiting Alaga rules
[58,59]. In the calculations above we have used the values
suggested by Minkov and Pálffy in 2017 [60], and this set
of values is denoted as set 1, as given below. Here we use
other suggested values for the purpose of comparison. For
example, in 2021 Minkov and Pálffy suggested an updated
range of values [61], and we denote the upper and lower limits
of the range as set 2 and set 3. Set 4 is from experimental data
analyses [30,59]. These sets of reduced transition probabilities
are listed as follows (W.u. means Weisskopf units):

Set 1 : B(E2, e → g) = 27 W.u.

B(M1, e → g) = 0.0076 W.u.

Set 2 : B(E2, e → g) = 42.9 W.u.

B(M1, e → g) = 0.008 W.u.

Set 3 : B(E2, e → g) = 33.8 W.u.

B(M1, e → g) = 0.005 W.u.

Set 4 : B(E2, e → g) = 17.55 W.u.

B(M1, e → g) = 0.048 W.u.

Ab initio calculations of B(E2/M1) for a nucleus like 229Th
are out of reach in the foreseeable future, and there is no con-
clusive means to judge which set of values is better than other
sets. This is the current status of knowledge about the reduced
nuclear transition probabilities. Uncertainties in the values of
the reduced transition probabilities lead to uncertainties in the
nuclear excitation cross sections within an order of magnitude,
as shown in Fig. 4. Only the total cross section for the 229Th1+

ion is shown for each set, and the electron wave functions are
Dirac DWs.

Note that the direction of nuclear transition also matters

B(E2/M1; g → e)

B(E2/M1; e → g)
= 2Ie + 1

2Ig + 1
= 2

3
. (40)

In Ref. [30] there seems to be a confusion in the transition
direction of set 1.
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FIG. 4. Isomeric excitation cross section of 229Th1+ for four dif-
ferent sets of the reduced nuclear transition probabilities, as labeled.
See text for the detailed values of the reduced transition probabilities.

E. Cross section with higher electron energies

We have mainly focused on excitation cross sections with
electron energies below 100 eV. In Fig. 5 we present excitation
cross sections with a much larger energy range up to 109 eV,
or 1 GeV. We show cross sections from both the Dirac DWs
and the Dirac PWs.

Let us look at the total cross sections. One can see that
the DW cross section drops first with the electron energy,
reaches a minimum around 0.5 MeV, and then increases with
the electron energy. In contrast, the PW cross section increases
quickly with the electron energy below 10 eV, reaches a
plateau, then increases quickly with energy above 0.5 MeV.
The gap between the DW cross section and the PW cross
section shrinks with the increase of the electron energy, as
would be expected, although the two agree with each other
only with very high electron energies approaching 1 GeV.

For electron energies below about 0.5 MeV, both the M1
and the E2 channels contribute, although the M1 channel is
more important for the DW case and the E2 channel is more

FIG. 5. Isomeric excitation cross section of 229Th1+ with Dirac
DWs and PWs, as labeled, for an extended energy range. Separated
contributions from the E2 or the M1 channels are also shown.

important for the PW case. For electron energies higher than
0.5 MeV, however, almost all the contributions come from the
E2 channel, for both cases.

Note that the purpose of Fig. 5 is just to see the comparison
between the DW and the PW cross sections. Only the nuclear
ground state and the isomeric excited state are considered.
Excitation to higher nuclear excited states is not taken into
account here.

F. Further remarks

We consider here a few schemes in which electronic ex-
citation of the 229Th nucleus may be implemented. The most
straightforward scheme is to use an external electron beam
with electron energies tuned to values corresponding to the
highest excitation cross sections, e.g., below 100 eV.

An alternative scheme is to use the 229Th atom’s own
electrons. The idea is to use a strong laser pulse to pull out
one or several electrons from the 229Th atom (i.e., strong-field
ionization), and then to drive the electron(s) back to collide
with and excite the 229Th nucleus. This process is called recol-
lision [62–64], which is the core process of strong-field atomic
physics. The energy of the recolliding electron is usually
several tens of eV, which is precisely the energy region with
the highest nuclear excitation cross sections. We proposed
this scheme in Refs. [31,32] with extended calculation results
presented in Ref. [33].

Another scheme is to use a plasma environment. In thermal
equilibrium the electron has a Maxwell-Boltzmann distribu-
tion that will be integrated to calculate the nuclear excitation
rate. A particularly promising approach is to start from an
atomic cluster, and to use a strong laser pulse to interact with
the cluster [65]. The atoms in the cluster are ionized releasing
electrons, which can be confined in the cluster for a time scale
on the order of 1 ps and excite the nucleus. The cluster has a
solid-state atomic density, so the flux density of the electron
can be much higher than that in a typical plasma.

IV. CONCLUSION

In this paper we consider nuclear isomeric excitation of
229Th via inelastic electron scattering. A theoretical frame-
work is presented for the calculation of the excitation cross
section on the level of Dirac distorted wave Born approxima-
tion. Numerical results are shown with detailed analyses on
elements that affect the excitation cross section. We show how
the excitation cross section changes if the ion-core potential is
removed (DWs vs. PWs), if the relativistic effect is removed,
if the ionic state is changed, and if the reduced nuclear tran-
sition probabilities are changed. Special emphases are given
to low electron energies with which the cross sections are
relatively high. Nevertheless, we also show cross sections with
an extended energy range for the curiosity of comparing PW
cross sections with DW cross sections.
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