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Abstract
Intense laser technologies generate light with unprecedented and growing inten-
sities. The possibility emerges that a nucleus responds nonlinearly to an intense
light field, pointing to an emerging research area of nuclear nonlinear optics.
Here we consider two-photon and three-photon absorption (with subsequent
disintegration) processes of the deuteron, the simplest and the most fundamen-
tal nontrivial nucleus, as prototypes of nuclear nonlinear optical effects. Novel
observable effects are predicted. Two-photon and three-photon absorptions are
shown to lead to remarkably different angular distributions compared to one-
photon absorption. Absorption rates are calculated supporting the feasibility of
near-future experimental realization. This work paves a way to the emerging
field of nuclear nonlinear optics.
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(Some figures may appear in colour only in the online journal)

1. Introduction

It is well known that atoms or molecules may respond nonlinearly to a light field if the latter
is sufficiently intense. This nonlinear response leads to a host of interesting phenomena, the
study of which constitutes the research discipline of nonlinear optics. The first nonlinear optical
effect can be dated back to the early 1930s to the prediction of Göppert-Mayer on two-photon
absorption of atoms [1], although nonlinear optics flourishes after the invention of lasers in
the 1960s. The goal of the current paper is to predict nonlinear optical effects, specifically
two-photon and three-photon absorptions, in a nucleus.

The reader might ask whether it is timely to consider such nuclear nonlinear optical effects.
The answer is yes if one is aware of recent advancements in intense laser technologies. Current
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Figure 1. (a) Radial wavefunctions of the deuteron ground state, which consists of an
S-component and a D-component. r is the distance between the proton and the neutron.
(b) Schematic illustration of two-photon and three-photon absorption processes of the
deuteron. 2.22 MeV is the threshold energy of dissociation.

intense laser facilities can generate light (usually in the near infrared) with peak intensities
on the order of 1022 W cm−2. Enhancements for another one to two orders of magnitude
are expected with the next-generation intense laser facilities, for example the extreme light
infrastructure of Europe [2–4] or the superintense ultrafast laser facility of Shanghai [5–7].
Ultraintense γ rays can be generated if the above near-infrared laser light interacts with solid
targets through highly nonlinear Compton scattering processes [8–12]. The energy conversion
from near-infrared laser to γ rays is quite efficient (with energy efficiencies as high as 35%),
and γ rays of intensities on the order of 1022 W cm−2 and durations on the order of 10 fs can
be expected in the near future [9].

What will happen if such intense γ rays interact with matter, especially nuclei? Although
light-nucleus interaction is an important topic in traditional nuclear physics, extensively stud-
ied in processes like γ decay, photoexcitation, photodisintegration, etc, the intensity of the
light considered had been rather weak. Will new phenomena emerge if the light becomes very
intense? More specifically, will nuclei respond nonlinearly to intense light fields like atoms or
molecules do?

In this paper we present answers to the above questions. To enter this new field of nuclear
nonlinear optics, it is sensible to start from the simplest instance. We consider the interaction
between intense light and the simplest nontrivial nucleus, the deuteron, the role of which in
nuclear physics is similar to that of the hydrogen atom in atomic physics. Also we consider the
simplest and perhaps the most fundamental nonlinear optical effect, two-photon absorption.
(Results for three-photon absorption will also be presented.) The expectation is to construct a
foundational model for nuclear nonlinear optics from which physical insights can be gained,
and more complex models (with more complex nuclei and/or on more complex nonlinear
optical effects) can be constructed.

2. The deuteron and its ground state

For the readers who are not familiar with the deuteron, let us first give a brief description to it.
The deuteron consists of a proton (p) and a neutron (n). Using quantum chromodynamics to
describe the strong interactions between p and n is extremely demanding, so the p–n potential is
usually described phenomenologically. Highly precise effective potentials with different levels
of sophistication have been developed [13–16]. The p–n potential is not exactly a central one,
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and different angular momenta can be coupled by tensor components of the potential. The
deuteron is known to have only one bound state (the ground state) of energy −2.22 MeV. The
ground state is a superposition of an S-state (with an angular momentum quantum number
L = 0) and a D-state (L = 2), although the latter is much weaker than the former. The ground
state wavefunction can be written as

〈�r|ψi〉 = RS(r)YJ=1,mJ=1
L=0,S=1 (θ,φ) + RD(r)YJ=1,mJ=1

L=2,S=1 (θ,φ), (1)

where�r = �rp −�rn is the relative position of the proton with respect to the neutron. YJ,mJ
L,S (θ,φ)

are eigenstates of the total angular momentum. L, S, J, and mJ are the quantum numbers of
the orbital angular momentum, total spin, total angular momentum, and the z-component of
the total angular momentum, respectively. The values of these quantum numbers as shown in
equation (1) are identified experimentally. The radial wavefunctions of the two components,
noted RS(r) and RD(r), are shown in figure 1(a), numerically calculated using the potential of
Reid [13]. Note that the wavefunctions are normalized by the condition

∫∞
0 (R2

S + R2
D)r2 dr = 1.

Because there are no bound excited states, photon absorption brings the deuteron from the
ground state to continuum states. Therefore the deuteron will disintegrate (dissociate) subse-
quently. If the photon energy is higher than the dissociation threshold of 2.22 MeV, the process
of one-photon absorption has been studied extensively in nuclear physics [17, 18]. If the photon
energy is lower than the threshold, then simultaneous absorption of the energy of more than one
photon is required, as illustrated in figure 1(b) for two-photon and three-photon cases. These
few-photon absorption processes are the result of nonlinear responses of the deuteron to the
external light, and they only happen when the light is very intense. For two-photon absorption,
the photon energy considered is within the range of (1.11, 2.22) MeV. If the photon energy is
higher than the threshold, two-photon absorption is still possible, but it will be overwhelmed by
the more probable one-photon absorption. For three-photon absorption, the considered photon
energy is within the range of (0.74, 1.11) MeV. For simplicity, a monochromatic light source
is assumed in our calculation, so the absorbed photons have equal energy.

3. Angular distributions of two-photon and three-photon absorption

We aim at making quantitative predictions on two-photon and three-photon absorption pro-
cesses. One might use the perturbation theory to calculate the light-induced response of the
deuteron. However, the perturbation theory is not very convenient for the deuteron system
because it involves summing over many (in principle infinite) intermediate continuum states
and calculating free-free transition matrix elements, which are known to be nontrivial to deal
with. Instead we use a method that avoids these difficulties. The method is called the strong
field approximation (SFA), or the Keldysh–Faisal–Reiss (KFR) theory [19–21]. It has been
extremely successful in describing highly nonlinear responses of atoms to intense laser fields.
These nonlinear responses have led to novel phenomena as multiphoton ionization [23–25],
high harmonic generation [26, 27], attosecond pulse generation [28–31], etc. The main idea
of SFA is to approximate the continuum states by Volkov states [22], the quantum states of
a free charged particle in an external electromagnetic field. This is of course more justified
for a short-range potential (which is the case for the deuteron) than for the Coulomb potential
(which is the case for atomic ionization). Therefore the SFA method is actually more suitable
to deuteron photodisintegration than to atomic ionization, for which the SFA method was orig-
inally developed. Details of the SFA method have been documented in references [19–21, 32]
and will not be repeated here, but the framework and the main formulas are given in appendix
A for the general readers who may not be familiar with this method.
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Figure 2. Angular distributions of the proton (or equivalently of the neutron) after two-
photon (top row) or three-photon (bottom row) absorption and disintegration of the
deuteron. The results are obtained using equations (A.13) and (A.14) in appendix. The
corresponding photon energy for each case is labeled on figure (the threshold energy of
disintegration is 2.22 MeV). The light is assumed to be linearly polarized along the z axis
and the angle θ shown in each figure is the polar angle with respect to the +z direction.
Each distribution is normalized to its own peak value. The radial axis is in arbitrary units.
The dashed curve in (a) is the dipole shape (cos2 θ) for one-photon disintegration, which
is insensitive to the photon energy and is plotted for the purpose of visual comparison.

First we show that two-photon and three-photon absorptions lead to drastically different
observable effects compared to one-photon absorption. For photodisintegrationof the deuteron,
the angular distribution of the resultant proton (or equivalently of the neutron) is the most
informative physical observable. It is known that for one-photon disintegration, a process quite
similar to atomic photoionization, the angular distribution is mostly of a dipole (i.e. cos2 θ)
shape and is insensitive to the photon energy [17, 18]. Here we have assumed that the light
is linearly polarized along the z axis and θ is the polar angle with respect to the +z direction.
Results for two-photon and three-photon absorptions, however, show very different angular
distributions with much richer shapes. For example, the top row of figure 2 shows angular
distributions of two-photon absorption with four different photon energies. For 2.2 MeV, an
energy just below the threshold, the distribution is mostly along 0◦ and 180◦, with however a
small lobe along 90◦. The difference between this shape and the normal dipole shape of one-
photon absorption (dashed curve on the same figure) can be clearly seen. The small lobe along
the perpendicular direction grows as the photon energy decreases, as can be seen from the
angular distributions for 1.9, 1.6, and 1.3 MeV. For the last case, almost all population is along
the perpendicular direction, with virtually none along the polarization direction. One sees from
these examples that angular distributions for two-photon absorption depend very sensitively on
the photon energy, in contrast to one-photon absorption.

Even more striking photon-energy dependency can be seen from three-photon absorption.
The bottom row of figure 2 shows examples of four different photon energies. For 1.1 MeV,
the angular distribution has four peaks (lobes) at 0◦, 60◦, 120◦, and 180◦. If the photon energy
decreases slightly to 1.0 MeV, the distribution changes into two peaks at 55◦ and 125◦, with
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Figure 3. Integrated two-photon (upper lines) and three-photon (lower lines) absorption
rates as a function of light intensity. Four different photon energies are used for each
category, as labeled. The light is linearly polarized. Note that two-photon rates depend
quadratically on the intensity, and three-photon rates depend cubically on the intensity.

virtually no population along the polarization axis. For photon energy 0.9 MeV, the positions of
the two peaks shift to 47◦ and 133◦, and the population along the polarization axis increases.
If the photon energy deceases to 0.8 MeV, then the population along the polarization axis
dominates, with an apparently wider distribution than the dipole shape.

The sensitive photon-energy dependency of two-photon and three-photon absorptions is the
result of the competition between the two terms (the one with �A · �p and the one with A2) in the
interaction Hamiltonian

VL = − q
μ
�A(t) · �p+ q2A2(t)

2μ
, (2)

where q = e/2 is an effective charge for relative motion and �A(t) is the vector potential. For
linear polarization we use �A(t) = ẑ A0 cos ωt, then �A(t) · �p = A0 p cos θ cos ωt and A2(t) =
A2

0 cos2 ωt. The former term has a polar angle dependency of cos θ whereas the latter term
does not. Both terms, however, contribute to two-photon and three-photon absorptions with
relative weights depending on the photon energy. This is the underlying reason for the photon-
energy-sensitive angular distributions shown in figure 2. In contrast, one-photon absorption
only involves the �A · �p term (because the A2 term changes the energy by 2ω), and the angular
distribution has a rather boring dipole shape insensitive to the photon energy.

4. The absorption rates

Figure 3 shows total two-photon and three-photon absorption rates as a function of light inten-
sity. The rates are integrated values over solid angles. For each category results of four photon
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Figure 4. (a) Illustration of convention for circular polarization. The quantization axis
is chosen to be the laser propagation axis, and the polar angle θ is with respect to the
direction of�k. The laser electric field �E(t) is perpendicular to and rotates about the prop-
agation axis. (b) Angular distributions for two-photon (red solid curve) and three-photon
(blue dashed curve) absorptions. They do not depend on the photon energy.

energies (same as used in figure 2) have been shown, as labeled on figure. One sees that within
each category, the absorption rate does not depend very sensitively on the photon energy,
although a higher photon energy does lead to slightly lower rates. This is interesting consid-
ering the extremely sensitive photon-energy dependency of the angular distributions shown in
figure 2.

For the two-photon case the absorption rates can reach about 10−5 s−1 with intensity
1022 W cm−2. Consider the amount of deuterium to be several milligrams, available for
example in a deuterium–tritium fuel cell, and a light pulse with duration 10 fs. Then the num-
ber of protons (neutrons) generated from two-photon disintegration processes would be on the
order of 100 from a single shot. This will open to experimental realization in the near future.
Being more optimistic and looking a little further into the future, the two-photon disintegra-
tion rate can reach 10−1 s−1 with intensity 1024 W cm−2, and the number of protons (neutrons)
generated under the mentioned conditions would be 106 per shot.

The three-photon absorption rates are much lower than the two-photon rates. At intensity
1021 W cm−2, the difference is about 13 orders of magnitude. The difference shrinks as the
intensity increases because of the different slopes of the lines. As would be expected, two-
photon rates depend quadratically on the intensity, and three-photon rates depend cubically on
the intensity.

5. Results for circular polarization

In the case of circular polarization, the quantization axis is chosen to be the laser propagation
axis by convention, and the polar angle θ is with respect to the direction of �k, as illustrated in
figure 4(a). The angular distributions have rather simple shapes. For the two-photon case, the
angular distribution has a shape of sin4 θ, independent of the photon energy. The same is true
for the three-photon case, except that the shape of the angular distribution becomes sin6 θ. For
circular polarization the A2 term of the interaction Hamiltonian (equation (2)) does not have a
time dependency, and only the �A · �p contributes to the dissociation. This leads to the relatively
simple angular distributions. The integrated two-photon and three-photon absorption rates are
similar to the corresponding cases for linear polarization (figure 3) and will not be shown.
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6. Conclusions

We consider two-photon and three-photon absorptions of the deuteron as the simplest scenario
of nuclear nonlinear optics. The possibility of nonlinear optical effects in nuclei is driven by
rapid advancements of intense laser technologies. Indeed, one sees increasing attention and
research efforts on light-nucleus interactions during the past few years. For example, the inter-
action between Mössbauer 57Fe nuclei and 14.4 keV photons from synchrotron radiations has
been used to demonstrate collective nuclear quantum optical effects [33–40]. Analyses have
also been made on the possibility of using intense light to influence α decay [41–43], nuclear
fission [44], or nuclear fusion [45–47] processes.

We have performed calculations on the two-photon and three-photon absorption processes
of the deuteron. The absorption of photons will be accompanied by subsequent dissociation of
the deuteron, leaving informative and observable effects in the angular distribution of the resul-
tant proton (neutron). Two-photon and three-photon angular distributions show rich shapes
and sensitive energy dependency, in remarkable contrast to one-photon angular distributions.
Besides the angular distributions, we have also calculated the integrated absorption rates. The
two-photon rates are high enough for upcoming experimental testings.

Extension to more complex nuclei and to other nonlinear optical effects can be anticipated.
Intense light-nuclei interaction would supply new ways or methods to control nuclei, as well
as new ways to change the property of the light in regimes inaccessible to normal optics. There
is certainly much to be expected in the emerging field of nuclear nonlinear optics.
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Appendix A. The SFA method

Here we outline the theoretical framework and the main formulas of the method that we use in
the main text. The method is called the SFA, or the KFR theory by the names of the developers.

The total Hamiltonian of the deuteron in an electromagnetic field can be separated into a
center-of-mass part and a relative-motion part. Since it is the dissociation process that is of
interest, we will be focusing on the latter part, which has the following terms

H =
p̂2

2μ
+ Vpn + VL, (A.1)

where p̂ is the momentum operator for the relative motion, μ = M/2 is the reduced mass with
M the mass of the proton (also approximately of the neutron), Vpn is the (phenomenological)
p–n potential, and VL is the interaction potential with the external light field. For convenience
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let us also define

H0 =
p̂2

2μ
+ Vpn; (A.2)

HL =
p̂2

2μ
+ VL, (A.3)

both being part of the total (relative-motion) Hamiltonian H.
In the velocity gauge [21, 48, 49], the interaction potential VL is given as

VL = − q
μ
�A(t) · p̂+

q2A2(t)
2μ

, (A.4)

where q = e/2 is the effective charge in relative motion and �A(t) is the vector potential. Since
the light considered here is very intense, the A2 term in the interaction cannot be neglected as
for weak light fields. As we show in the main text, this term plays an important role in the angu-
lar distributions of two-photon and three-photon absorptions. We are mainly interested in light
with photon energies below the dissociation threshold (2.22 MeV), or the wavelengths being
longer than about 550 fm, which is much larger than the size of the deuteron itself (≈1 fm).
The spatial variation of the vector potential can therefore be neglected. Here we choose
�A(t) = �εA0 cos ωt, where the vector potential has been assumed to have a sinusoidal form
linearly polarized along direction �ε.

If at time t0 the deuteron is in its ground state |ψi〉, then the probability amplitude of finding
the system later in a final plane-wave state |ψ�p〉 is

M�p(t, t0) = 〈ψ�p|U(t, t0)|ψi〉, (A.5)

with 〈�r|ψ�p〉 = (2π)−3/2 ei�p·�r. U(t, t0) is the time-evolution operator corresponding to the total
Hamiltonian H. Because of the complexity of Vpn, there is no simple analytical form for U(t, t0).
However, the time-evolution operators corresponding to the Hamiltonian H0 and HL are much
simpler with the following forms

U0(t, t0)|ψi〉 = exp {−iEi(t − t0)} |ψi〉; (A.6)

UL(t, t0)|ψ�p〉 = exp

{
−i

(
p2

2μ
+ ηω

)
(t − t0) + i

√
ηα(sin ωt − sin ωt0)

− iη
2

(sin 2ωt − sin 2ωt0)

}
|ψ�p〉. (A.7)

In equation (A.6) Ei is the energy of the ground state. In equation (A.7) we have used
equations (A.3) and (A.4) and defined for convenience η ≡ q2A2

0/4μω and α ≡ 4(�ε · �p)2/μω.
It is to be pointed out that ηω is the ponderomotive energy of the proton. For example,
for the deuteron in a light field with intensity 1024 W cm−2 and photon energy 0.8 MeV,
η ∼ 10−10 � 1. The relationship η � 1 holds for all the results reported in this paper. This
means that the ponderomotive energy is much smaller than the photon energy.

It can be proved that U and U0 are related by the following equation

U(t, t0) = U0(t, t0) − i
∫ t

t0

U(t, t1)VL(t1)U0(t1, t0)dt1. (A.8)
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If the propagator U inside the integral of equation (A.8) is approximated by UL, then the
transition amplitude M�p in equation (A.5) can be written as

M�p(t, t0) ≈ −i
∫ t

t0

〈ψ�p|UL(t, t1)VL(t1)U0(t1, t0)|ψi〉dt1. (A.9)

This approximation is called the SFA, developed by Keldysh [19], Faisal [20], and Reiss [21].
The SFA transition amplitude has a clear physical picture: the system starts from the initial
state |ψi〉 at t0, propagates under the influence of H0 until time t1, when it is kicked by the laser
potential VL, and from t1 to t the system propagates under the influence of HL, neglecting the
effect of the the p–n binding potential. SFA has been widely used to describe the interaction
between atoms and intense laser fields. In fact, as explained in the main text, SFA is more
suitable for the deuteron system because the p–n potential is of short range, and neglecting
the binding potential in the continuum state is more justified than for atoms with long-range
Coulomb potentials.

We continue by substituting equations (A.4), (A.6) and (A.7) into equation (A.9). The
following expansion will be used [21]

exp

{
iη
2

sin 2ωt − i
√
ηα sin ωt

}
≈

∞∑
n=−∞

(
−η

4

)n/2
ζn(α)e−inωt, (A.10)

for η � 1. Here ζn(α) ≡
∑

k(−α)k/(2k)!(n/2− k)!, and n takes integer values. For even n,
k = 0, 1, . . . , n/2; and for odd n, k = 1/2, 3/2, . . . , n/2. The transition amplitude can then be
written in the following concise form in the long-time limit (i.e. for pulses much longer than
an optical period)

M�p(t →∞, t0 →−∞) ≈ i
ψ̃i(�p)√

2π

∑
n

nω
(
−η

4

)n/2
ζn(α)δ

(
p2

2μ
− Ei − nω

)
, (A.11)

where ψ̃i(�p) = (2π)3/2〈ψ�p|ψi〉 is the momentum component of the deuteron ground state, or the
Fourier transformation of equation (1). The transition amplitude is a summation over different
disintegration channels, distinguished by the number of photons absorbed. For a channel with
n absorbed photons, the delta function imposes the energy conservation condition.

The differential rates (angular distributions) can be obtained by integrating out the final �p
in each solid angle

dw
dΩ

=

∫
p2 dp lim

t0→−∞
t→∞

|M→
p
(t, t0)|2

t − t0
=

√
2μ3ω5

4π2

∞∑
n=n0

n2

√
n +

Ei

ω

(η
4

)n
|ψ̃i(

→
pn)|2ζ2

n (αn),

(A.12)

where n0 is the minimum number of photons required for dissociation (the integer just
greater than −Ei/ω) and pn =

√
2μ(Ei + nω) fulfilling the delta-function energy constraint in

equation (A.11). The total disintegration rate w can be obtained by integrating the differential
rates over all solid angles.

As mentioned earlier the condition η � 1 holds in our calculation, and equation (A.12)
is a sum of ηn, only the n0 term needs to be kept (that is, ‘above-threshold’ disintegrations
can be neglected). n0 = 1 corresponds to single-photon disintegration which has been stud-
ied in traditional nuclear physics. n0 > 1 corresponds to the cases that multiple photons need
to be absorbed simultaneously to disintegrate the deuteron. Then the angular distribution
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equation (A.12) can be simplified to

dw
dΩ

≈
√

2μ3ω5

4π2
n2

0

√
n0 +

Ei

ω

(η
4

)n0
|ψ̃i(�pn0)|2

×
n0/2∑
k=0

n0/2∑
l=0

(−8)k+l
(
n0 +

Ei
ω

)k+l
(cos θ)2k+2l

(2k)! (2l)!
( n0

2 − k
)
!
( n0

2 − l
)
!

(A.13)

for even n0, and

dw
dΩ

≈ 2
√

2μ3ω5

π2
n2

0

(
n0 +

Ei

ω

) 3
2 (η

4

)n0
|ψ̃i(�pn0 )|2

×

n0−1
2∑

k=0

n0−1
2∑

l=0

(−8)k+l
(
n0 +

Ei
ω

)k+l
(cos θ)2k+2l+2

(2k + 1)! (2l + 1)!
( n0−1

2 − k
)
!
( n0−1

2 − l
)
!

(A.14)

for odd n0. Here θ is the polar angle with respect to �ε, the direction of the laser vector potential.
It is easy to find that the kinetic energy of the center of mass pcm ∼ A2

0/M is less than the
photon energy ω by more than 10 orders of magnitude. Therefore the motion of the center of
mass can be neglected. The kinetic energy of the emitted proton is less than the photon energy
ω (neglecting above-threshold disintegrations). The momentum of the proton is therefore less
than

√
2μω. With this condition the D-component of the deuteron ground state, constituting

a few percent in population, contributes little to the disintegration. This is because the S-
component has more low-momentum fractions than the D-component does. We have checked
that the relative contribution from the D-component is less than 10−3 in the disintegration
process.

For circularly polarized light, the vector potential can be written as

�A(t) =
A0

2

(
�ε eiωt + �ε∗ e−iωt

)
, (A.15)

where �ε · �ε = 0, �ε · �ε∗ = 1. The differential disintegration rate reads

dw
dΩ

≈
√

2μ3ω5

4π2

(
n0 +

Ei
ω

)n0+
1
2

[(n0 − 1)!]2 |ψ̃i(�pn0 )|2ηn0 (sin θ)2n0 . (A.16)

Only the n0 order is kept. Note that for circular polarization, the polar angle θ is defined with
respect to the laser propagation direction. One finds that the differential cross section depends
on θ only through the last (sin θ)2n0 term. That is, for the same n0, different photon energies
lead to the same shape of angular distribution.
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