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ABSTRACT
We extend an earlier “virtual detector” method [X. Wang, J. Tian, and J. H. Eberly, Phys. Rev. Lett. 110, 243001 (2013)], a hybrid quantum
mechanical and classical trajectory method based on the concept of probability current, to include phases in the classical trajectories. Effects
of quantum interferences, lost in the earlier method, are partially restored. The obtained photoelectron momentum distributions agree well
with the corresponding numerical solutions of the time-dependent Schrödinger equation.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0040193., s

I. INTRODUCTION

The interaction between isolated atoms or molecules with
intense laser fields has led to highly nonlinear phenomena, such as
above-threshold ionization,1–4 high harmonic generation,5–7 non-
sequential double ionization,8–10 and attosecond physics.11,12 The-
oretical descriptions are not trivial due to the nonperturbative
nature of such an interaction. Various approaches have been devel-
oped, each having some particular advantages and of course also
limitations.

The most accurate approach would be numerically solving
the time-dependent Schrödinger equation (TDSE).13–18 The disad-
vantages of this approach include high computational loads and
difficulties in providing clear physical pictures. The theory of strong-
field approximation is analytically simple and computationally effi-
cient.19–21 Qualitative agreements with experiments are usually
obtained due to approximating the continuum states with Volkov
states and neglecting the atomic excited states.

Classical simulations are widely used to gain insights into
strong-field processes, especially double or multiple ionization pro-
cesses,22–26 which are extremely difficult for quantum mechanical
calculations. The advantages include clear physical pictures and
very moderate computational loads. The disadvantage is that only
qualitative agreements can be expected with experiments.

Classical models that incorporate some quantum mechanical
features have also been developed,27–29 with the expectation that
better agreements with experiments can be obtained. In these mod-
els, the electrons obey classical mechanics, but their initial condi-
tions (positions, momenta, and weights) are assigned according to a
quantum tunneling picture, exploiting, e.g., the Ammosov–Delone–
Krainov tunneling formula.30 These models have been further devel-
oped to include phases accumulated along the classical trajectories,
such that features of quantum interferences are at least partially
retained.31–33

It is to be pointed out that the above semi-classical models rely
on an assumed (adiabatic) tunneling-ionization mechanism, which
is an approximation to the real, much more complicated, ionization
process in the quasistatic limit (characterized by a Keldysh param-
eter γ ≪ 119). In fact, most strong-field experiments are not per-
formed in that limit, but with γ ∼ 1. The models may be modified34

by using the (nonadiabatic) Perelomov–Popov–Terenr’ev ionization
formula.35 Debates have been reported in the literature on how to
specify the initial conditions of the electron trajectories starting from
the tunneling exit. Where is exactly the tunneling-exit point? (See,
e.g., a summary of several different criteria in Ref. 36.) What should
be the velocity of the electron at the tunneling exit point?37–43 It
is found that the final electron momentum distribution depends
sensitively on how these initial conditions are assigned.
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We were motivated to develop a trajectory-based method that
does not rely on ad hoc ionization mechanisms.44 The idea of our
method is that the TDSE is first solved on a small numerical grid
around the atom without pre-assuming an ionization mechanism,
and then, the outgoing wave is transformed into classical trajecto-
ries. The expectation was that this method combines the advantages
of both the accuracy of quantum mechanics and the computational
efficiency of classical mechanics.

The way to do this wave-to-trajectory transformation is to use
the concept of probability current. The velocity of the probability
current at some position is used as the initial velocity of a classical
trajectory. A nickname of “virtual detector” (VD, virtually detecting
the velocity of the wave at some position) was given to such a method
by Feuerstein and Thumm,45 but we comment that using the veloc-
ity of the probability current to initiate a trajectory was exactly the
proposal of Bohm46,47 and has been widely used in other fields as
well.48

The VD method has been shown to yield good agreements
with TDSE calculations on photoelectron momentum distribu-
tions,44,45,49 although quantum interferences are necessarily lost due
to the transformation to classical trajectories. Besides, the VD tech-
nique has been found very useful in gaining insights into the ultra-
fast ionization process.42,43,50–52 The goal of the current paper is to
present a further development of the VD method. We extend the
earlier method44 to include phases accumulated along the classi-
cal trajectories; therefore, the effects of quantum interferences are
at least partially retained. Indeed, we show that discrete rings in
the electron momentum distributions due to absorption of different
numbers of photons are restored.

This paper will be organized as follows. In Sec. II, a brief
introduction to the VD method will be given, and the way to
include phases along classical trajectories will be explained. Numeri-
cal results and discussions will be given in Sec. III. A conclusion will
be given in Sec. IV.

II. METHOD
A. A brief introduction to the VD method

We briefly summarize the VD method here, since more details
have been given previously in Refs. 44 and 49. The space (centered
at the atomic ion core) is separated into a relatively small inner
region and an outer region. In the inner region, the TDSE is solved
numerically. In the outer region, the electron is treated as a classical
particle and its trajectory evolves according to classical mechanics.
The key ingredient of this hybrid method is a VD network that encir-
cles the atomic center, “detecting” (but not affecting, hence virtual)
the outgoing wave and transforming the wave into classical trajec-
tories. Each trajectory is born from one of the VDs, with an initial
velocity and also a weight assigned by the VD. Subsequent evolu-
tion of the trajectory until the end of the laser pulse is deterministic.
Observables, such as the final electron momentum distribution, can
be obtained by summing over all trajectories with weights.

The electron initially is assumed to be in the ground state of the
atom. The VDs are placed evenly along a circle where the ionization
process can be regarded as completed, e.g., 20 a.u. or 30 a.u. from the
atomic ion. After the laser pulse is turned on, the electron wavefunc-
tion evolves according to the TDSE, and the VDs are triggered to

initiate classical trajectories. Consider a classical trajectory initiated
at time t0 from a VD located at r⃗0. The probability current is (atomic
units are used unless otherwise stated)

j⃗(r⃗0, t0) =
i
2
[Ψ(r⃗0, t0)∇Ψ∗(r⃗0, t0) − c.c.]

= A2(r⃗0, t0)∇ϕ(r⃗0, t0), (1)

where A(r⃗0, t0) and ϕ(r⃗0, t0) are the amplitude and the phase of the
wavefunction Ψ(r⃗0, t0), respectively, both being real functions.

The weight of the classical trajectory initiated at {r⃗0, t0} is given
by the magnitude of the probability current,49

w(r⃗0, t0) = j(r⃗0, t0), (2)

and the initial momentum of the classical trajectory is given by the
phase gradient,

p⃗0(r⃗0, t0) = ∇ϕ(r⃗0, t0). (3)
The position and momentum of the electron at the end of pulse,

{t1, r⃗1, p⃗1}, can be determined from {t0, r⃗0, p⃗0} according to classical
mechanics. After the laser pulse is over, the momentum of the elec-
tron no longer changes (if the residual Coulomb attraction from the
ion core can be neglected). The electron will need time to fly from r⃗1
to the detector located at r⃗D. The final state of the electron is noted
as {tf , r⃗D, p⃗1}. The following relation holds for the (approximately)
free flying,

r⃗D − r⃗1 = (tf − t1)p⃗1. (4)
The final momentum distribution is obtained by summing over

all classical trajectories with final momenta around a given value p⃗,

W(p⃗) = ∑
{⃗r0 ,t0}

w(r⃗0, t0) with p⃗1 ∈ [p⃗, p⃗ + dp⃗]. (5)

B. Phases accumulated along a classical trajectory
Here, we explain how the phase should be taken into account.

An illustration is given in Fig. 1 along with the explanation. Consider
also the classical trajectory initiated at {r⃗0, t0}, when the phase of the
wavefunction is ϕ(r⃗0, t0). We take this phase as the initial phase of
the trajectory. The trajectory then propagates from t0 to t1 in the
laser field, and the phase accumulated is given in terms of the action
along the trajectory,

Φ(t1, t0) = ∫
t1

t0
L dt, (6)

FIG. 1. An illustration of the phases accumulated along a classical trajectory, from
a virtual detector where it is initiated to a real detector where it is ended. The
trajectory is initiated at time t0 and position r⃗0, where it obtains an initial phase
ϕ(r⃗0, t0). It travels to r⃗1 with the laser pulse, which ends at time t1. During this
time, the phase gained is Φ(t1, t0). Then, it flies (approximately) freely to the detec-
tor located at r⃗D with a constant momentum p⃗1. The phase gained during the free
flying is Φ(tf , t1).
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where the Lagrangian in the length gauge53 is given by

L = v2

2
− V(r) − r⃗ ⋅ E⃗(t), (7)

and v⃗ = ˙⃗r. The dipole approximation has been used with which the
spatial dependency of the laser electric field is neglected.

At time t1, the laser pulse is over and the electron becomes
approximately a free particle. It will fly from r⃗1 to the detector at r⃗D
with nearly a constant mechanical momentum p⃗1, and the electron
will gain an additional phase,

Φ(tf , t1) = p⃗1 ⋅ (r⃗D − r⃗1). (8)

Because only trajectories with the same final momentum interfere,
the phase p⃗1 ⋅ r⃗D is an overall phase and can be neglected.

The total phase associated with the trajectory is

Φtot(r⃗0, t0) = ϕ(r⃗0, t0) + Φ(t1, t0) + Φ(tf , t1)

= ϕ(r⃗0, t0) + ∫
t1

t0
L dt − p⃗1 ⋅ r⃗1. (9)

The final momentum distribution will be obtained by summing
over classical trajectories with final momenta around p⃗ “coherently,”

W(p⃗) =
RRRRRRRRRRRR
∑
{⃗r0 ,t0}

√
w(r⃗0, t0)eiΦtot (⃗r0 ,t0)with p⃗1 ∈ [p⃗, p⃗ + dp⃗]

RRRRRRRRRRRR

2

. (10)

III. RESULTS AND DISCUSSIONS
A. Restoring the interference patterns

Figure 2 shows the electron momentum distributions of (a) the
extended VD method with phases, (b) the original VD method with-
out phases, and (c) numerical TDSE calculations under the same
conditions. Indeed, one sees that the interference structures (i.e., dis-
crete photon rings), which are lost in the original VD method, are
restored by using the extended VD method.

The laser intensity is 0.4 PW/cm2, and the wavelength is
600 nm. An elliptically polarized laser pulse of the following form
is used,

E⃗(t) = E0f (t)(x̂ sinωt + ŷϵ cosωt), (11)

FIG. 3. Projections of the electron momentum distributions shown in Fig. 2 onto
the Px axis and the Py axis. The red solid lines are for the extended VD method.
The blue dashed lines are for the original VD method. The black dash-dotted lines
are for the TDSE results.

where ϵ = 0.78 is the ellipticity value, ω is the angular frequency,
and f (t) is a pulse envelope function. A trapezoidal pulse with a total
duration of 20 optical cycles has been used, with a two-cycle linear
turning on and a two-cycle linear turning off.

The TDSE is numerically integrated on a two-dimensional grid,
which is large enough (from −600 to 600 a.u. for each dimension) to
keep all the population on the grid during the pulse. The ion core
potential is given by V(r) = −1/

√
r2 + a2 with a = 0.28 a.u., which

yields a ground state energy of −0.9 a.u., matching that of the helium
atom. The TDSE is integrated numerically using a split-operator
method starting from the ground state, which is found using an
imaginary-time technique.

The VD method uses a much smaller numerical grid (from −50
a.u. to 50 a.u. for each dimension). 400 VDs are placed evenly on
a circle of radius 20 a.u. The VDs are triggered at each time step
(Δt = 0.01 a.u.) as the wavefunction propagates out. An absorption
region is used outside the VD circle to avoid wave reflection from
the boundary of the small numerical grid.

We further compare the projections of the electron momentum
distributions onto the Px axis and the Py axis, as shown in Fig. 3. For
the Px distribution, the three results agree well, although the results
from the extended VD method seem somewhat noisy. The noisy

FIG. 2. Electron momentum distributions obtained from (a) the extended VD method with phases, (b) the original VD method without phases, and (c) the numerical TDSE
calculations under the same conditions. The laser wavelength is 600 nm, and the intensity is 0.4 PW/cm2.

AIP Advances 11, 025124 (2021); doi: 10.1063/5.0040193 11, 025124-3

© Author(s) 2021

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 4. Electron momentum distributions obtained from (a) the extended VD
method with laser wavelength 400 nm, (b) the TDSE calculations with laser wave-
length 400 nm, (c) the extended VD method with laser wavelength 740 nm, and
(d) the TDSE calculations with laser wavelength 740 nm. The laser intensity is
0.4 PW/cm2 for both cases.

structure can be gradually suppressed by using more trajectories,
although the general experience with phase-included trajectories is
that the noise suppression may progress slowly.33,34 For the Py dis-
tribution, the extended VD method restores the interference peaks,
which are lost in the original VD method. Compared with the TDSE
results, the extended VD method shows the same number of peaks,
although the positions of the peaks show a small overall shift.

In Fig. 4, we also plot electron momentum distributions under
two different laser wavelengths, namely, 400 nm and 740 nm. These
figures also present clear interference patterns as the TDSE results
show.

B. Some critical remarks
1. On semi-classical trajectory methods in general

The area of semi-classical physics is not a concluded one. There
is no clear border between the quantum world and the classical
world, and there is no single perfect approach to reconcile the wave
description and the trajectory description. It is therefore advisable to
keep an open mind as well as a critical attitude to any semi-classical
trajectory method, acknowledging its advantages, disadvantages,
and domain of applicability.

2. On the probability current

As mentioned in the Introduction, using the velocity of the
probability current to initiate a trajectory is a widely used tech-
nique in different areas of theoretical physics or chemistry.46–48

The concept of the probability current, however, has its limitations
that are not widely appreciated. An obvious fact is that the prob-
ability current is zero everywhere for a bound state with magnetic

quantum number m = 0. A trajectory approach based on the velocity
of the probability current would say that the electron is static in these
bound states. This sounds odd, at least apparently. Efforts, however,
have been seen in the literature attempting to extend the standard
concept of the probability current, e.g., by the group of Heller at
Harvard University.54–56

We also point out that the velocity of the probability current at
some position, ∇ϕ(r⃗, t), is actually the average value of all possible
velocities at that position,49 if we understand it from the phase-space
perspective using, e.g., the Wigner function. This is actually the main
source of error for the VD method, probably for all trajectory meth-
ods based on the concept of probability current. Representing a
distribution with a single average value has of course only limited
domain of applicability.

IV. CONCLUSION
In this paper, we present an extension to a previous virtual

detector method,44 which is a hybrid quantum mechanical and clas-
sical trajectory method and is expected to combine some advantages
from both sides. The extension made here is to include phases in
the classical trajectories, so that effects of quantum interferences are
retained, at least partially.

We explain how the phases should be included using a sim-
ple physical picture as given in Sec. II. The numerical results indeed
show that the lost quantum interferences are restored in the cur-
rent extended method. The electron momentum distributions show
interference structures as features of absorbing different numbers of
photons, agreeing with the results of TDSE calculations under the
same condition.
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