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Abstract
A virtual detector (VD) is an imaginary device located at a fixed position in space that extracts
information from the wave packet passing through it. By recording the particle momentum and
the corresponding probability current at each time, the VDs can accumulate and build the
differential momentum distribution of the particle, in a way that resembles real experiments. A
mathematical proof is given for the equivalence of the differential momentum distribution
obtained by the VD method and by Fourier transforming the wave function. In addition to being
a tool for reducing the computational load, VDs have also been found useful in interpreting the
ultrafast strong-field ionization process, especially the controversial quantum tunneling process.
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1. Introduction

Ionization is one of the fundamental processes of strong-field
light-atom interaction. It is the very first step of the well
accepted recollision scenario [1, 2], which assumes that an
electron is emitted via quantum tunneling before being
accelerated in the laser field and possibly driven back to the
parent ion to initiate various physical processes, including
high harmonic generation [3, 4], nonsequential double or
multiple ionization [5, 6], laser-induced electron diffraction
[7, 8], etc. It is surprising, in retrospect, to see that a com-
bination of the long familiar elements of atoms and photons
could have led to so much new physics [9, 10], and pushed us
into the unprecedented attosecond time domain [11].

Theoretical understanding of the interaction between a
strong laser field and an atomic or molecular target relies
heavily on numerical wave function calculations due to the
nonperturbative nature of the interaction. Such a calculation
usually imposes a heavy computational load, especially
when differential information is of interest, due to the
need for a large numerical grid to hold the wave function,
which may spread to hundreds to thousands of atomic
units in space driven by the strong laser field. The computa-
tional load quickly becomes infeasible as the number of
electrons increases. In fact, many strong-field time-dependent
Schrödinger equation (TDSE) calculations are still based on

the single-active-electron approximation using an effective
potential describing the remaining ion core [12–15]. Ab initio
calculations on the helium atom interacting with strong
(extreme ultraviolet to near infrared) laser fields have been
performed by a few groups using supercomputers [16–20].
However, there is no near-future prospect of extending such
calculations beyond helium.

Attempts have been made to reduce the computational
load based on the observation that at large distances from the
ion core, the effect of the Coulomb potential is weak, and the
electron motion can be approximated as a free particle driven
by the laser field. Such motion can be described analytically
by a Volkov state [21], and then further numerical integra-
tions are not needed. Examples based on this approximation
include a time-dependent surface flux method proposed by
Scrinzi et al [22, 23], and an analytical R-matrix method
proposed by Smirnova et al [24–26].

Another method, called a virtual detector (VD) method,
proposed by Feuerstein and Thumm in the strong-field regime
[27], presents a different idea of approaching the same goal of
reducing the computation load. Instead of seeking more
economic ways of calculating or approximating the wave
function evolving to the end of the laser pulse, the VD
method seeks the possibility of extracting desired information
(e.g., electron momentum distribution) from the wave func-
tion as early as possible, long before the end of the pulse.
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After desired information has been extracted, further evol-
ution of the wave function is no longer of concern and it can
be destroyed by an absorbing boundary condition. No large
numerical grid is thus needed to hold the ever spreading wave
function. Based on the VD method, Wang et al developed a
hybrid quantum mechanical and classical trajectory approach
that takes full account of the long range ion-core Coulomb
potential, and the VD method has been shown to agree very
well with ultrashort laser pulse TDSE results [28].

In addition to being a tool of reducing the computational
load, the VD method was recently found useful in helping to
interpret and characterize the tunneling ionization process, which
is known to be controversial. For example, Teeny et al [29, 30]
and Ni et al [31, 32] use the VD method to extract tunneling-
ionization-related information such as tunneling time, tunneling
rate, position of tunneling exit, etc. Tian et al [33] use it to solve
the apparent controversy of electron longitudinal momentum at
the tunneling exit [34–37]. Considering that quantum tunneling
is the first step of the recollision scenario, and that widely used
recollision-based semiclassical models [38–44] employ expli-
citly the tunneling parameters (the position of the tunneling exit
and the electron momentum at the tunneling exit) as the initial
conditions for subsequent classical trajectory evolutions, clear
interpretation and precise characterization of the tunneling pro-
cess is useful and important for recollision physics.

This special issue article has two goals. The first goal is
to give an introduction to the VD method as well as a brief
review of some published works based on it. We believe such
an introduction and review will be beneficial for those who
are interested in this method. The second goal is to present
some new results. Specifically, we give a mathematical proof
to a basic conjecture of the VD method that the differential
momentum distribution obtained using the VD method is
equivalent to that obtained from Fourier transforming the
wave function. Until now, that conjecture has only been
proved by Feuerstein and Thumm for the special case of one-
dimensional free-particle Gaussian wave packets [27].

This article is organized as follows. In section 2 an intro-
duction to the VD method is given. In section 3 the special
situation of free-particle wave packets is discussed, and the proof
to the conjecture just mentioned is given in an asymptotic limit.
In section 4 the VDs are moved from the asymptotic limit to the
vicinity of the interaction center, where they are found useful in
helping to interpret the strong-field tunneling ionization process.
Finally a summary is given in section 5.

2. The VD method

2.1. Basic idea of the VD method

A VD is an imaginary device located at some fixed position in
space and extracting information from the wave function
passing through it. The information of interest usually
includes the particle velocity or momentum (the exact
meaning of which will be explained in detail later) and the
probability current. This is the same as a real detector located
at some fixed position in space and detecting the probability
current passing through it.

The differences between a VD and a real detector are also
obvious. First, a virtual detection process is just an imaginary
information-extracting process so it does not affect the wave
function. A real detection process has to involve some sort of
interaction with a classical apparatus and results of this
interaction changes the wave function. Second, a VD can be
put anywhere in space, e.g., microscopically close to an
interaction center, whereas a real detector always has a
macroscopic distance from the interaction center. The free-
dom of putting a VD microscopically close to the interaction
center has been exploited to extract dynamical information
about the tunneling ionization process, as will be discussed in
section 4. Third, a VD avoids the complications of a real
detector, such as detection efficiency, random noise, response
time, etc.

The original goal of the VD method was to reduce the
computational load of obtaining differential momentum dis-
tributions in strong-field processes, such as molecular dis-
sociation, atomic ionization, etc [27]. After information
extraction by the VDs, further wave function evolution is not
of concern so that it can be destroyed via an absorbing
boundary. (Of course this implies that the wave function
should not be substantially altered in later evolutions, such as
encountering a recollision process. A later recollision can be
avoided by either putting the VDs far enough from the ion
core or using elliptical polarization.) Therefore a large num-
erical grid is not needed to keep the whole wave function,
which can spread to a distance of hundreds to thousands of
atomic units.

A schematic illustration of the VD method is shown in
figure 1 for one dimension, and extension to two or three
dimensions is conceptually straightforward. A wave packet is
created in the interaction center, via strong-field ionization,
and it evolves as a function of time. A VD is placed on each
side to extract information from the wave packet. After pas-
sing through the VDs, the wave packet enters the absorbing
boundary zone and is absorbed (destroyed) to avoid
reflection.

2.2. Flow velocity of the probability fluid

A VD records particle velocity (momentum) from the wave
packet. This velocity is understood as the flow velocity of the

Figure 1. Illustration of the virtual detector method in one
dimension. A wave packet is created near the center of the numerical
grid. A VD is placed each side, extracting information from the wave
packet. After passing through the VDs, the wave enters the
absorbing boundary zone being absorbed.
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probability fluid. If we write a wave function in the polar form

Y = f  
( ) ( ) ( )( )r t A r t, , e , 1r ti ,

with
( )A r t, and f

( )r t, real functions and ( )A r t, 0, then
the probability density is

r = Y =
  ( ) ∣ ( )∣ ( ) ( )r t r t A r t, , , , 22 2

and the probability current can be written
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In analogy to the classical fluid equation =
 ( )j r t,

r
  ( ) ( )r t v r t, , , one sees that the flow velocity is proportional

to the spatial gradient of the phase of the wave function


f= 

  ( ) ( ) ( )v r t
m

r t, , , or 4

 f= 
  ( ) ( ) ( )p r t r t, , , or 5

f= 
  ( ) ( ) ( )k r t r t, , . 6

These are the velocity/momentum/wave number for-
mulas extracted by a VD located at position


r at time t. We

emphasize that it is meaningful to talk about the flow velocity
at a fixed position, and the VD method is therefore closely
related to the field of quantum hydrodynamics [45] and tra-
jectory formalisms of quantum mechanics [46–49].

Another way of obtaining the flow velocity is to apply
the momentum operator to the wave function
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The velocity associated to the real part is exactly the flow
velocity of equation (4), and the velocity associated to the
imaginary part is called the Einstein osmotic velocity, related
to quantum diffusion.

In the VD method, at each time step the probability
density r

( )r t, , which contains the amplitude information of
the wave function, and the probability current

 ( )j r t, , which
contains the phase information of the wave function, are
recorded. And it is known from quantum mechanics that
knowing the probability density and the probability current is
equivalent to knowing the amplitude and the phase of the
wave function, up to a constant overall phase [50]. Therefore
in principle the VD method is able to obtain all the physical
information carried by a wave function at the time of (virtual)
detection.

2.3. Flow velocity in momentum space

To have a better understanding about the flow velocity of the
probability fluid, we give its expression in momentum space.
Assume a wave packet is created at time t=0, when it can be

written as

òp
yY = =

   
( )

( )
˜ ( ) ( )·r t k k, 0

1

2
e d . 8k r

3 2
i 3

Then the wave packet evolves with time according to

òp
yY = D   

( )
( )

˜ ( ) ( )( )r t k k,
1

2
e d , 9k r t

3 2
i , , 3

where we have defined

wD º -
    

( ) · ( ) ( )k r t k r k t, , 10

with w


( )k the dispersion relation.
From equations (1) and (9), we can get
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Take logarithms of both sides and we get
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Then take the spatial gradient of the phase function
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Because f
( )r t, and

( )A r t, are both real functions, we
conclude that the imaginary part of the first term on the right
hand side must cancel the second term (the proof will not be
shown here). Then we have
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We see that formally f
( )r t, is the real part of the average

value of

k , consistent with the interpretation given by

equation (7) in real space.

2.4. Probability current in momentum space

From equations (2) and (9), the probability density can be
written in the form
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From equations (3), (14), and (15), the probability current
can be shown as
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We see that further evaluations of the flow velocity and
the probability current involve the following two integrals

ò y= D
  ˜ ( ) ( )( )I k ke d , 17k r t

1
i , , 3

ò y= D
   ˜ ( ) ( )( )I k k ke d , 18k r t

2
i , , 3

or their complex conjugates, which in general have to be
evaluated numerically.

3. Free-particle wave packets and the asymptotic
limit

The formalism presented in the previous section is general
and exact. No approximations have been made. In this section
we consider the special case of free-particle wave packets for
the following reasons: first, free-particle wave packets relate
closely to real detection processes because a real detector
always has a macroscopic distance from the interaction center
and the particles can be regarded as free at the time of
detection. Second, free-particle wave packets provide the
possibility of analytical insights into the VD method itself.

Let us consider a free-particle wave packet by specifying
the dispersion relation


w =


( ) ( )k
k

m2
, 19

2

which makes the phase given in equation (10) quadratic in

k .

Completing the square, one gets
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3.1. The asymptotic limit

Further evaluations of the two integrals in equations (17) and
(18) are simple in an asymptotic limit where t is large. The
term D

 ( )e k r ti , , is highly oscillatory except in the vicinity of the
stationary wave vector
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Recall that

r is the location of the VD. In this asymptotic

limit I1 and I2 can be evaluated simply
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We have used the Fresnel integral
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The asymptotic limit and the stationary-phase condition
effectively disentangle the wave vector superpositions
appearing in equations (17) and (18).

Using equation (14) the flow velocity becomes

  
f=  = = =
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which is just the classical velocity for the particle flying from
the interaction center (where the wave packet is created) to
the VD.

Using equation (16) the probability current becomes
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This formula links the probability current detected by a VD at
position


r and time t, with the Fourier component y


∣ ˜ ( )∣ks

2 of
the wave packet. It provides a practical way of obtaining the
Fourier components of free-particle wave packets.

3.2. The differential momentum distribution

A VD, located at position

r , detects at each time t the flow

momentum of the wave passing through it, as well as the
probability current, which is used as the weight of the
corresponding momentum. By accumulating the momentum
and the corresponding weight over time, one obtains the
differential momentum distribution. We now prove that the
momentum distribution obtained this way, a scheme that
resembles real experiments, is equivalent to Fourier trans-
forming the free-particle wave packet.

The total probability of particle detection is
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where = = W


ˆ ˆS r S rrd d d2 is the area element of the detector,
with dΩ the spanned solid angle. The probability density of
finding a particle within a small momentum volume
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Using the stationary-phase relation given by equation (21),
we have


= - ( )t

k

mr

k

d

d
. 29

s s
2

Then the differential momentum distribution of
equation (28), after straightforward algebra, becomes precisely

y=
 

( ) ∣ ˜ ( )∣ ( )P k k . 30s s
2

We have finished our proof that in the asymptotic limit,
the differential momentum distribution obtained by the VD
method is equivalent to Fourier transforming the free-particle
wave packet.

3.3. One-dimensional Gaussian wave packet

In this subsection we use a 1D Gaussian wave packet to
illustrate the flow velocity, the probability current, and the
asymptotic limit. The purpose is to help the reader to better
understand these physical quantities. For the sake of con-
venience, we consider an electronic wave packet and use
atomic units, so ÿ=m=1.

Consider a Gaussian wave packet with spatial width Γ at
time t=0

p
Y = =

G
-

G

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )x t

x
k x, 0

1
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2
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1 4

2

2 0

which is centered at x=0 and moves with group velocity k0.
The corresponding Fourier transform is

y
p
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-
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Using the 1D version of equations (14), (17)–(19), we
easily get

f
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¶
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which is the same as equation (14) of [27] using a different
approach. Note that this expression is valid for all t since
the asymptotic limit has not been applied. We see that in
the zero-time limit, = =( )k x t k, 0 0, which is the group
velocity of the wave packet, and in the asymptotic limit

 ¥ =( )k x t x t, , which is the classically expected velo-
city. We also see that the asymptotic limit is fulfilled when the
following two conditions are met: Gxt k4

0 and Gt2 4.
Or we can combine them as G G { }t k xmax ,2 4

0 .
An illustration of k(x, t) is given in figure 2 for a fixed VD

position x=20 a.u. The parameters of the wave packet are
chosen as k0=2 a.u., Γ=1 a.u. (panel (a)) and Γ=2 a.u.
(panel (b)). The red (solid) curve in each panel is the velocity
detected by the VD as a function of time, viz. k(x, t) given by
equation (33). The blue (dashed) curve in each panel is the
classically expected velocity, given by x/t. When the asymptotic
condition is met, the velocity detected by the VD approaches the

classical velocity. One can check that the asymptotic condition
for each case is t ? 1 a.u. and t ? 4 a.u., respectively. It is
worth mentioning that in the asymptotic limit the time t does not
have to be macroscopic.

For t=0, we have k=k0 and is independent of the
position of the VD. Before reaching the asymptotic limit
where a single Fourier component dominates due to the sta-
tionary-phase condition, the velocity detected by the VD,
according to equation (14), is the result of the superposition of
all Fourier components.

Using the 1D version of equation (16) the probability
current can be obtained simply

*
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where ( )k x t, is given by equation (33). This result is the
same as equation (16) of [27]. Figure 3 shows the probability
current passing through the VD corresponding to the two
cases of figure 2. Since the VD locates at x=20 a.u. and the
wave packet moves with a group velocity of k0=2 a.u., one
expects a peak probability current around t=10 a.u. Because
the wave packet in the first case (with Γ=1 a.u.) is initially
more localized in space than the second case (with Γ=
2 a.u.), we expect the first wave packet to spread more quickly
than the second one. Therefore the probability current shown
in panel (a) starts earlier and ends later in time than the one
shown in panel (b).

Figure 2. Velocity detected by a VD located at x=20 a.u. The
Gaussian wave packet is moving with a group speed k0=2 a.u. The
initial width of the wave packet is Γ=1 a.u. (a) and Γ=2 a.u. (b).
The red solid curve in each panel is the velocity detected by the VD,
given by equation (33). The blue dashed curve in each panel is the
classically expected velocity x/t.

Figure 3. Probability current detected by a VD located at x=20 a.u.
as a function of time, corresponding to the same two cases as
figure 2.
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3.4. Free-particle wave packet in a laser field

In a strong-field experiment the interaction between the laser
field and the atomic or molecular target happens in the laser
focus. Interaction resultants, such as emitted electrons,
ionized atoms, molecular fragments, etc, fly out from the laser
focus to the detector, which has a macroscopic distance from
the laser focus. The detection happens long after (∼nanose-
conds) the laser pulse (∼femtoseconds) is over. In fact, during
a laser pulse of a few tens of femtoseconds, the resultants are
deep inside the focus, having little chance of experiencing the
spatial gradient of the laser focus before the laser pulse
is over.

A VD, in contrast, has the flexibility of being put any-
where in space, including places inside the laser focus. For the
VD method to be useful in reducing the computational load of
strong-field processes, the VDs have to be put inside the laser
focus, with distances from the interaction center much smaller
than the length of the numerical grid needed to keep the
whole wave function. Therefore it is important to understand
what is detected by a VD inside a laser field.

We consider here the simplest situation that a free-par-
ticle wave packet is created at time t=0 inside a laser field
(which may not be zero then). Then the theory and formalism
given previously apply to the current situation, provided that
some modifications are made. Specifically, the dispersion
relation in equation (19) needs to be modified to


 w = -

  
( ) [ ( )] ( )k t

m
k q t,

1

2
, 352

where q is the charge of the particle and 


( )t is the vector
potential of the laser field. The spatial dependence of the
vector potential is not considered due to the reason just
explained above.

The phase of equation (20) becomes (with a subscript L
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Two short-hand notations


( )l t and ξ(t) are introduced,
whose definitions can be seen comparing the third step with
the second step. The first two terms on the right hand side are
the same as those of the no-laser situation, and the additional
two terms are introduced by the laser field.


( )l t has the units

of length and is usually called the quiver displacement
induced by the laser electric field from time 0 to t, and ξ(t) is
an additional phase usually called the ponderomotive phase.

In the asymptotic limit when t is large, the phase is highly
oscillatory except in the vicinity of the stationary


k vector,

which, by requiring ¶D ¶ =

k 0L , is now


= +

  
[ ( )] ( )k

m

t
r l t . 37s

We see that the quiver displacement


( )l t enters into the
picture. As explained above, and demonstrated in figure 2,
fulfilling the asymptotic condition does not necessarily con-
flict the configuration that the VDs are put inside the laser
focus and close to the interaction center.

Following similar steps as in the no-laser case, we get the
probability current detected by a VD located at


r and at time t

 
 y= -

    
⎜ ⎟⎛
⎝

⎞
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⎡
⎣⎢

⎤
⎦⎥( ) ( ) ∣ ˜ ( )∣ ( )j r t
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t
k

q
t k,

1
, 38s s

2

3
2

which reduces to equation (26) as the laser field vanishes.
Equation (38), together with equation (37), tells us how to
decode the Fourier components of the free-particle wave
packet from the probability current detected by the VDs, in
the presence of a laser electric field.

4. Virtual detectors at the tunneling exit

In the previous section, we focus on the asymptotic limit
where the particle wave packet is far from the interaction
center and hence can be regarded as a free wave packet. We
mathematically prove that in the asymptotic limit, the diff-
erential momentum distribution obtained by the VD method,
a scheme that resembles real experiments, is equivalent to
Fourier transforming the wave packet.

In this section we consider the opposite limit: putting a
VD close to the interaction center to extract dynamical
information especially about the tunneling ionization process.
This kind of study is enabled by the freedom of the VD
method, for no real detectors can be put microscopically close
to an atom.

The theoretical studies reviewed in this section are
motivated by two factors. The first is pure curiosity. The
following questions have been asked, for example: (i) Does
the electron need time to tunnel through a potential barrier?
(ii) What is the velocity of the electron at the tunneling exit
(i.e., right after finishing the tunneling process)? We believe
that one understands the tunneling ionization process better if
these questions are answered, instead of being simply dis-
missed. After all, how does one understand the tunneling
ionization process without asking questions like these?

The second factor is the demand from experiments.
Experiments have tried to answer the above-mentioned tun-
neling-ionization-related questions without being over-
burdened with theoretical debates. For example, attempts
have been made to answer whether the electron emission has
a time delay from the peak of the laser electric field [51–54].
For another example, attempts have also been made to answer
whether there is a nonzero velocity of the electron at the
tunneling exit [34–37]. These authors interpret their data
partially based on classical arguments. It is not obvious what
quantities in quantum mechanics correspond to what they
want to retrieve. For example, what quantity in quantum
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mechanics is the time delay between electron emission and
the peak of the laser electric field? What quantity in quantum
mechanics is the electron velocity at the tunneling exit?

The VD method provides a conceptually straightforward
way of understanding the tunneling ionization process. Phy-
sical quantities that correspond to the experiments can be
easily defined quantum mechanically using the VD concept.
Next, we will review and briefly explain the use of the VD
method in understanding the above-mentioned experiments
on the tunneling ionization process.

4.1. Time delays in tunneling ionization

Several attempts have been made trying to answer the ques-
tion whether tunneling ionization is instantaneous [51–54].
These experiments retrieve the time difference between the
peak of the laser electric field and the peak of tunneling
ionization, which is known to be extremely sensitive to the
electric field strength. Elliptically polarized laser pulses are
used which have two properties to exploit: first, there are two
clear field peaks each laser cycle so the time of laser field
peak is well defined; second, electrons emitted at different
times fly to different spatial angles due to the rotating feature
of elliptical polarization. By measuring the angular distribu-
tion of the emitted electron and assuming the electron motion
is classical after emission, the ionization time can be
retrieved.

One sees that the interpretation provided by these works
[51–54] is largely based on classical mechanics. From the
theoretical point of view, the first question to ask is probably:
what quantity in quantum mechanics corresponds to the time
delay between laser field peak and ionization?

Teeny et al show that this time delay can be straight-
forwardly defined quantum mechanically using the VD con-
cept [29, 30]. By putting a VD at the tunneling exit (as
illustrated in figure 4. Note that if the tunneling process is
nonadiabatic, the location of the tunneling exit may not be so
clearly defined.), the VD records the electron probability
current as a function of time, and a clear peak can be iden-
tified denoted as texit. The time delay that corresponds to the
quantity retrieved by the experiment is tdelay=texit−t0,
where t0 is the time of laser field peak. Teeny et al further

show numerical results (see figure 4 of [30]) that this tdelay is
not positive definite: it may vary between about ±20 attose-
conds depending on the laser electric field strength. This
means that the electron may be most probably emitted shortly
(on the attosecond time scale) before or after the peak of the
laser electric field. The numerical results are in good agree-
ment with the conclusion of the experiment.

By putting another VD at the tunneling entrance (as
illustrated in figure 4) and recording the electron probability
current there, one finds the latter quantity peaks at time tin.
The time difference ttunneling=texit−tin is, we believe, the
most straightforward quantity that corresponds to our under-
standing of the time that the electron needs to tunnel through
the potential barrier. Teeny et al show that (see figure 4 of
[30]) this ttunneling is finite and positive definite, the precise
value of which depends on the laser field strength. For lower
field strengths, the potential barrier is thicker and the tun-
neling time is larger. And for higher field strengths, the
potential barrier is thinner and the tunneling time is smaller.
The absolute values of the tunneling time are on the order of
10–100 attoseconds for strong-field ionization.

4.2. Electron velocity at the tunneling exit

Another quantity that experiments [34–37] have tried to
retrieve is the velocity of the electron at the tunneling exit
point. This velocity is usually assumed to be zero based on
the argument that at the tunneling exit the kinetic energy
equals zero. And this zero-velocity assumption has been used
as the initial condition of some widely used semiclassical
models based on the three-step recollision spirit [38–44]. Note
that here we are talking about the longitudinal velocity that is
parallel to the laser polarization direction, whereas the
transverse velocity perpendicular to the polarization direction
is usually assumed to obey a Gaussian distribution centered at
zero without much controversy [55, 56].

The retrieval of this longitudinal tunneling velocity is
also based partly on classical mechanics: the electron motion
is assumed to be classical after ionization. Pfeiffer et al show
that if the velocity at the tunneling exit is assumed to be
precisely zero, then the theoretically predicted end-of-pulse
momentum distribution will have a relatively large dis-
crepancy with the data. By adjusting the width of the tun-
neling exit velocity distribution (which, however, is still
assumed to be centered at zero with a Gaussian shape) hence
allowing nonzero velocities, a best fit to the data can be
achieved. The authors show initially that a relatively large
width of about 0.8 a.u. provides the best fit to the data [34].
But later this width was corrected by the same group to about
0.4 a.u. using a different data-analyzing method [35, 36].

Interestingly and puzzlingly for quite some time, the
experiment by Sun et al [37] using the same retrieval pro-
cedure but a different atomic target (Kr versus He as used by
Pfeiffer et al) reaches a different conclusion that the zero-
velocity assumption is still good. They found that the tun-
neling exit velocity for Kr is narrowly centered at zero with a
possible small uncertainty of about 0.1 a.u.

Figure 4. Illustration of tunneling entrance and tunneling exit in
strong-field ionization. The black curve shows a tilted Coulomb
potential in a laser electric field. The horizontal line shows the
energy level of a bound state. The point of tunneling entrance and of
tunneling exit can be well defined by the crossings of the energy
level with the Coulomb potential barrier.
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Let us return to the apparent contradicting experimental
conclusions a little later, but first ask the following question:
what quantum mechanical quantity corresponds to this tun-
neling exit velocity? What does it mean by a velocity at a
specified position? The flow velocity of the probability fluid,
as extracted by a VD, provides possibly the only sensible
quantum mechanical definition to the quantity retrieved in
these two experiments.

Tian et al (the same authors of the current article)
numerically study the problem of the tunneling exit velocity
using the VD method [33]. By putting VDs in the vicinity of
the tunneling exit points and recording the probability flow
velocity and the corresponding weight (viz., the probability
current) at each time, a differential momentum distribution
can be obtained at the tunneling exit point (in contrast to
experimentally measurable momentum distributions which
are obtained in the asymptotic limit). These tunneling-exit-
point differential momentum distributions are shown in
figure 5 for He and Kr, using the same laser intensities as used
in the experiments [34, 37], for two different ellipticity
values. The laser intensity for He is 8×1014 W cm−2 and for
Kr 1.2×1014 W cm−2.

One sees from figure 5 that the tunneling exit velocity is
not a universal constant, since it is clearly different for He or
for Kr. For He, the velocity distributions have two well
separated peaks at about ±0.8 a.u. Recall that for elliptically
polarized laser fields, tunneling ionization happens twice per
optical cycle around the times when the field along the major
polarization direction (x direction here) is maximum. In
contrast, for Kr, the two momentum peaks can barely be
distinguished due to very small absolute values.

From the VD method, it is not surprising that experi-
ments using different atomic targets and laser parameters give

different results on the tunneling exit velocity. The tunneling
exit velocity is not a (zero or nonzero) constant for different
atoms or laser parameters. The two experiments by Pfeiffer
et al [34] and by Sun et al [37] do not contradict each other.

The numerical results from the VD method, however, do
not support the assumption used in [34–37] that the tunneling
exit velocity has a Gaussian distribution centered at zero with
some finite width. The velocity distributions obtained by the
VD method, as seen from figure 5, do not have a Gaussian
shape centered at zero. Instead, they have two sharp peaks
centered away from zero, especially in the He case. If a zero-
centered Gaussian distribution is assumed, the width may
have to be wide enough to cover the velocity magnitude as
found in the VD method, in order to have the best agreement
with the experimental data.

5. Summary

In this article we have given an introduction to the VD
method, which is formulated with the goal of reducing the
computational load of calculating wave function evolution in
strong laser fields [27]. In contrast to traditional methods that
calculate or approximate the wave function until the end of
the laser pulse using a large numerical grid and then
extracting information from the final wave function, the VD
method seeks the possibility of extracting desired informa-
tion, e.g., the differential momentum distribution of the par-
ticle, long before the end of the pulse. If this is possible, then
further evolution of the wave function will not be needed and
the computational load can be greatly reduced.

We mathematically prove in this article that in the
asymptotic limit where the wave packet can be regarded as
free, the differential momentum distribution obtained by the
VD method, a scheme that resembles real detection processes,
is equivalent to Fourier transforming the wave packet. This is
the first time that such a mathematical proof is given, and this
proof is the theoretical basis of the VD method.

In the opposite limit of putting the VDs in the vicinity of
the interaction center, the VD method has been found useful
in extracting dynamical information about the tunneling
ionization process [29–33, 57]. We believe that the VD
method provides conceptually the most straightforward
quantum mechanical definitions to some physical quantities
of interest, such as the tunneling delay time and the velocity at
the tunneling exit. These quantities are raised not only by pure
theoretical curiosity, but also by real experiments [34–37,
51–54].
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Figure 5. Tunneling-exit-point momentum distributions for He (left
column) and Kr (right column). Two ellipticity values are used for
each atom, as labeled on each panel. The laser intensity for He is
8×1014 W cm−2, and for Kr 1.2×1014 W cm−2.
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