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The lack of analytical solutions for the exit momentum in the laser-driven tunneling theory is a well-
recognized problem in strong field physics. Theoretical studies of electron momentum distributions in the
neighborhood of the tunneling exit depend heavily on ad hoc assumptions. In this Letter, we apply a new
numerical method to study the exiting electron’s longitudinal momentum distribution under intense short-
pulse laser excitation. We present the first realizations of the dynamic behavior of an electron near the so-
called tunneling exit region without adopting a tunneling approximation.
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Strong field atomic, molecular, and optical (AMO)
physics is an exceptional domain in science. For several
decades, it has been yielding an array of unexpected and
sometimes strongly counterintuitive experimental findings.
It has done this just by combining long-familiar elements
(atoms and photons) at high laser field strengths on a very
short time scale. It is one of the few domains in physics
where the nonperturbative theory can confront feasible
experiments that enter new parameter spaces, in this case
the realm of attoscience. Here we take two steps that
resolve an existing strong field conflict and in doing so
provide long-needed ab initio results which show time-
dependent oscillations in the momentum of an electron in
the vicinity of what is called the tunneling exit.
Ionization is an essential element of strong field AMO

physics, because it is the first step leading to some of the
most intriguing phenomena including, for instance, high
harmonic generation [1], nonsequential double ionization
[2,3], and the arena of attosecond science generally [4].
Semiclassical models are the dominant theoretical approach
in studying strong field ionization. In such a model, an
electron first nonperturbatively tunnels through a tilted
Coulomb potential barrier and then flies away along a
classical trajectory [5,6].
A typical semiclassical simulation model depends on the

widely used “adiabatic” tunneling condition [7,8], which
adopts the approximation that the ionizing laser frequency
is much slower than the bound electron’s Bohr frequency.
However, in recent years, the adiabatic tunneling theory has
been challenged [9–13]. These advanced studies raise the
question: If the tunneling process is nonadiabatic and
significantly time dependent, how do we describe an
electron’s momentum distribution near the tunneling exit
point, especially its momentum component longitudinal to
the laser field’s major polarization axis?
We emphasize the longitudinal momentum here, since

the distributed wave function of an electron that is

nominally under the potential barrier can be strongly
affected by the laser in the direction of the field. Some
theoretical results [14,15] provide approximate formulas
for the asymptotic longitudinal momentum, but accurate
analytical expressions are not known for the “exit” longi-
tudinal momentum or its standard deviation at the tunneling
exit point. The difficulty to be expected in overcoming this
lack has been recently noticed and emphasized by the
strong field physics community [16–18], and the earliest
analysis of this issue remains prominently relevant:
“… Uncertainty in the moment of tunneling, which is
responsible for the uncertainty in the initial velocity, also
means that it is virtually impossible to separate the initial
velocity distribution from the distortions caused by the
electric field during this temporal uncertainty” [19].
When physicists adopt an adiabatic tunneling model in

studying longitudinal momentum, they may easily find
controversial results. Pfeiffer et al. and Sun et al. have used
similar experimental techniques to reveal the momentum
distributions at the tunneling exit for helium and krypton
atoms [16,18]. A coordinated backward-processing method
has been employed by both groups to find values and
standard deviations of the exit’s longitudinal momentum.
In the backward-processing method, in the first step, an

electron is assumed to tunnel through the potential barrier
and to appear outside the barrier with some probability. The
timing and position of the tunneling electron and its
ionization probability are decided by the adiabatic tunnel-
ing model. Then, by randomly choosing from a presumed
distribution, one assigns a momentum to the tunneled
electron. The longitudinal component of this artificial
momentum distribution is a Gaussian distribution centered
at zero and has a presumed standard deviation [16]. In the
second step, one uses the tunneling exit position and
the tunneling probability given by the ionization model
and the model momentum as the initial conditions of a
classical trajectory. By comparing the numerical far-field
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(asymptotic) momentum distributions (especially the longi-
tudinal part) against the experimental data at different
ellipticities, one finds the exit longitudinal momentum
standard deviation values that give the least absolute
error between the numerical results and the experimental
data. Both groups [16,18] conclude that this backward-
processing method can define the exit longitudinal momen-
tum distributions for different ellipticities at the tunneling
exit point. Surprisingly, the same approach leads to contra-
dictory conclusions.
By applying backward processing and making a strict

quantitative comparison between data and simulating
results, Pfeiffer et al. have found that the tunneling electron
emerges with a nonzero standard deviation ranging from
0.5 (ε ¼ 0.55) to 1.3 (ε ¼ 0.15) atomic units (a.u.) in its
exit longitudinal momentum [16]. Hofmann et al. recon-
firmed that a nonzero exit longitudinal momentum spread is
crucial to reach quantitative agreement between the numeri-
cal and experimental data [17].
However, using experimental observations of krypton

ionization, Sun et al. [18] and Li et al. [20] reach an
opposite conclusion. They compare the longitudinal
momentum data of krypton to backward-processing sim-
ulations and demonstrate that near-zero choices of the exit
longitudinal momentum standard deviation between 0.0
and 0.2 a.u. are more credible. Sun et al. conclude that a
zero exit longitudinal momentum width is still a valid exit
momentum distribution to use in a semiclassical model.
These two different conclusions show that the exit

longitudinal momentum distributions given by a back-
ward-processing method may heavily depend on the
initial-condition assumptions.
In any discussion of ionization, it is important to remain

aware that experiments have no direct access to electron
behavior at the “moment” or “location” of a “tunnel exit” or
“release” from the ion, if such nonquantum language even
makes sense. These artificial "initial" conditions of
classical trajectories are used in almost all semiclassical
models due to the absence of a full analytical expression of
the tunneling ionization. In recent advanced experiments
using strong ultrafast laser pulses, the tunneling ionization
model has begun to lose its predictive power. One can
always retrieve a best fitting result by manipulating the
initial conditions. In such cases, a semiclassical model
regresses to a mere mathematical tool.
By contrast, exploration of the confusion or conflict

about important features of the exit momenta is very direct
when using the Schrödinger equation–Newton equation
(SENE) method, which has been introduced and extended
in Refs. [21,22]. It provides, we believe, the first results that
are not under the control of a tunneling assumption. Both
longitudinal and transverse standard deviations, as well as
correlations, can be calculated. As far as a tunnel exit is
concerned, the distribution of times of arrival to almost any
exit point is also available.

In this Letter, we show that the SENEmethod not only can
resolve the conflict between experiments, but also can help
in retrieving the dynamical behavior of an electron near the
imprecisely known tunneling zone.We follow the laboratory
conditions used for helium and krypton atoms [16,18] and
first numerically solve a two-dimensional time-dependent
Schrödinger equation (TDSE) in the polarization plane (x-y
plane) for the quantum wave function in a soft-core
Coulomb potential V ¼ −1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r2

p
[23,24], where the

bound-electron’s wave function Ψðr⃗; tÞ at t ¼ 0 is numeri-
cally found by imaginary time integration. We use a ¼ 0.28
(0.5) a.u. to have a ground state energy of−0.9 ð−0.51Þ a:u:
tomatch the ionization potential of helium (krypton).A laser
pulse starts to interact with the wave function at t ¼ 0. The
laser field E⃗ðtÞ in a.u. is given by

E⃗ðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
I

1þε2

r
fðtÞ½sinðωtþζÞêxþεcosðωtþζÞêy�: ð1Þ

For helium calculations, the laser field has a wavelength of
788 nm and a FWHM of 33 fs. The peak laser intensity is
I ¼ 0.8 PW=cm2, fðtÞ is a sine-squared shape envelope
function which has a maximum value of 1, and ζ is the
carrier-envelope phase (CEP) [25]. For krypton, the wave-
length is still 788 nm, but the peak intensity drops to
0.12 PW=cm2 and the FWHM drops to 25 fs. We apply
the SENE with different ε values ranging from 0.2 to 0.93.
To mimic a random CEP, we use five CEPs evenly
distributed between (0, 2π) for each ε value. The size of
our discrete numerical time step is 0.02 a.u.
To confirm that the SENE results can lead to a quanti-

tative agreement with experimental data, we have also
compared our numerical far-field longitudinal momentum
standard deviations σffx with the experiment [16]. We follow
the definition of the longitudinal momentum standard
deviations in Refs. [14,16]. The asymptotic longitudinal
momentum is defined as the momentum component along
the major polarization direction (x axis). In Fig. 1, we
include experimental data from Ref. [16] and a theory
function curve from Ref. [14]. The formula for the theory
line is σffx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ω=2γ3ð1 − ε2Þ

p
.

Comparing with a tunneling semiclassical model, the
SENE competitive advantage is obvious. One does not
need to rely on the unprovable presumption that an electron
is ionized through tunneling despite being exposed to
unknown dynamical effects and finally appears outside
the barrier with a specific momentum and a zero tunneling
time. Instead, all information is obtained by integrating the
TDSE and is extracted by numerical detectors (NDs)
described previously [21,22]. By splitting the computing
space into an inner part and an outer part, the SENEmethod
shares some common features with other advanced numeri-
cal methods (e.g., ARM by Kaushal and Smirnova [26] and
t-SURFF by Scrinzi [27]).
In recent research, the SENE method has been proved a

useful model in studying nonadiabatic tunneling process
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with a nonzero tunneling time delay [28,29]. However, the
electron’s dynamic motion under the barrier is still an
unsolved question. In this Letter, we use numerical detec-
tors [21] to study the momentum distributions of the wave
function near the tunneling region and directly observe the
electron’s behavior in a classical forbidden zone without
using a tunneling hypothesis or approximations.
To investigate the momentum distributions near the

tunneling zone, we set the ND ring’s radius close to the
postulated laser cycle averaged tunneling radius. In a
linearly polarized field, this is approximately Ip=jEtj,
where Ip is the ionization potential of the electron and
jEtj is the field strength at time t. For helium, with the laser
parameters used in our calculations, the tunneling radius is
about 6 a.u. at the peak intensity of the laser pulse. The
same approximation gives a tunneling radius for krypton
which is about 8 a.u. Considering the time-dependent

oscillation of the laser field and that the field strength
decreases with larger ellipticity values, we set the ND circle
at 10 a.u. for both helium and krypton to collect the
momentum information near the tunneling region. In Fig. 2,
we show the scheme of the SENE method.
In Fig. 3, we show cumulative exit momentum distri-

butions for helium and krypton through the laser pulse. The
exit momentum distributions are collected by the NDs. In
the distributions of helium atoms, along the px axis, all
distributions divide into two parts and form a two-peak
structure. To capture the dynamic motion of an electron
near the tunneling exit, we use the data values recorded by
NDs in a time window with size T=8, where T is the laser
cycle period. There are approximately 250 time steps in
each time window. Since the CEP value is specified for
each ionized electron, we will use only zero CEP to
demonstrate an electron’s motion. For other CEPs, the
time oscillation curves will simply shift.
We plot the averaged exit momentum-distribution

parameters in Fig. 4. In the plot, both time-resolved
parameters of helium and krypton show a time-dependent
oscillation. Although the oscillating amplitude of krypton is
much smaller than that of helium, the time-dependent
average momenta p̄x and p̄y of krypton still have nonzero
values and oscillate around zero. The time-dependent
oscillation of the average longitudinal momentum confirms
that the electron’s momentum near the tunneling region is
time dependent and should be described in a dynamic way.
Clearly, an electron’s motion near the tunneling region is
nonadiabatic and strongly coupled with the laser field. In
Fig. 4, we also plot the unit field strengths.

FIG. 2. The circle of numerical detectors [21,22] with radius Rd
is shown, as well as outgoing classical particle trajectories that
were initiated with the momentum values determined by the
detectors. The trajectories continue to be fully affected by both
laser action and ionic Coulomb attraction as the particles
propagate outward to actual detection.

FIG. 3. Rows from top to bottom: ε ¼ 0.2, 0.5. Columns from
left to right: cumulative initial momentum distributions in the
polarization (x-y) plane at NDs through whole laser pulse of
(1) helium, (2) krypton. The peak laser intensities used are for
helium 0.8 PW=cm2, and for krypton 0.12 PW=cm2.

FIG. 1. The final momentum spread in the x direction. In this
graph, we show σffx values of a theory line (black solid line) [14],
experiment data points (red circles) [16], and the SENE result
using grid map step size dL ¼ 0.4 a:u: (blue triangles). At
ε ¼ 0.2, 0.5, and 0.8, we also show the SENE results using
dL ¼ 0.2 as a “theoretical error bar.” The results of dL ¼ 0.4 and
0.2 converge at all three ellipticities.
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However, these time oscillations of a single electron
cannot be observed in a lab now (nor in the foreseeable
future). For experimental observations, it is meaningful to
describe the electron’s initial momentum in a cumulative
ensemble by including data from all times and all CEPs.
So, we plot the cumulative σðpxÞ and σðpyÞ in Fig. 5.

First, we notice that the standard deviations of py of helium
and krypton at ε < 0.5 are close to the values predicted by
the tunneling theory. The tunneling theory [7,8] predicts that
the exit momentum component perpendicular to the polari-
zation direction has a Gaussian distribution, which is
centered at zero and has a standard deviation equal to

σtunnelðpyÞ ¼
ffiffiffiffiffi
ω

2γ

r
; γ ¼

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ipð1þ ε2Þ

q

E0

: ð2Þ

Here, γ is the Keldysh parameter [30] and ω, I, and ε are the
laser field’s frequency, peak intensity, and ellipticity, respec-
tively. With a linearly polarized field, Eq. (2) gives standard
deviation values of 0.24 a.u. for helium and 0.17 a.u. for
krypton. In Fig. 5, at ε < 0.5, σðpyÞ values of both helium
and krypton are close to the predicted values.
When the ellipticity increases, two pairs of numerical

curves of helium and krypton behave in a similar way.
Standard deviations in the px and py directions, σðpxÞ and

σðpyÞ, will converge toward a single value when the
ellipticity goes to 1. That is, in a circularly polarized laser
field, the exit momentum distribution is uniformly distrib-
uted along a circle. The cumulative momenta standard
deviations mimic the behavior of E0x and E0y when the

ellipticity changes, which are proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð1þ ε2Þ

p

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2=ð1þ ε2Þ

p
. That explains why σðpyÞ is more

sensitive to the ellipticity change.
The longitudinal momentum standard deviations of

krypton are much smaller than for helium at all ellipticity
values. Our longitudinal momentum standard deviations of
krypton (green dashed line) range from 0.3 to 0.22 a.u. This
standard deviation range is in the range of the prediction
made by Sun et al. [18].
Surprisingly, our momentum standard deviations near

the tunneling region quantitatively agree with both groups’
results. There is no controversy in our simulations. Near-
one and near-zero standard deviations coexist in our results.
In the view of the SENE method, the decrease of the exit

longitudinal momentum standard deviation is a predictable
result. An outgoing wave packet will be accelerated and
stretched in the direction of the laser field. When the laser
peak intensity drops from 0.8 to 0.12 PW=cm2, a smaller
average jpxj value and a smaller σðpxÞ are predictable
results with the SENE method. The actual conflicts come
from overlooking the coupling between the laser field
and the ionized electron’s momentum. In the backward
processing, both groups assume that an electron is ionized
through adiabatic tunneling. In the cumulative momentum-
distribution plots, due to a higher laser intensity, the
separation between the two peaks is larger for helium
atoms. To cover the larger separation, the adiabatic hypoth-
esis needs larger standard deviations. In Fig. 5, the TIPIS

FIG. 4. Time-resolved values of p̄xt, p̄yt, and T is one laser
period. The discrete step size is T=8. The width of the momentum
distribution in each time window is plotted as vertical error bars.
Columns from left to right: (i) helium and (ii) krypton. All single
plots show the time-dependent parameters’ changes over the
center two and a half cycles of the laser pulse. We also plot unit
field oscillation in both the x and y directions.

FIG. 5. This figure shows how the cumulative σðpxÞ and σðpyÞ
change vs ellipticities for helium and krypton atoms. In a near-
circularly polarized laser beam, two standard deviations con-
verge. We also compare our data of standard deviations in
longitudinal momentum of helium atoms to the prediction made
by the TIPIS model [16].
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model [16] predicts standard deviations that are close to our
data of helium atoms. So, using a backward process, one
can partially match the physical truth of the longitudinal
momenta. However, such an adiabatic hypothesis misses
the crucial coupling between the laser and the ionized
electron which is easily handled by the SENE method.
In conclusion, in past research, the adiabatic tunneling

theory has been a powerful theoretical tool to interpret
experimental data. In this Letter, we note that using
adiabatic assumptions in studying the longitudinal momen-
tum distributions of photoionized electrons can lead to
controversial conclusions. We show how the SENE method
can resolve controversies caused by a backward-processing
method. Using the SENE method, we retrieve the first
quantitative evidence of dynamic motion of an electron
near the tunneling region. Since the SENE method can
easily retrieve quantum wave function information of an
electron, it will be a valuable tool for ab initio studies
including both laser and ionic forces. In the so-called
tunneling zone, fascinating issues such as the electron’s
multidimensional motion and its dynamic delay time must
be the topics of future work.
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