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For time-dependent strong-field atomic ionization a new theoretical approach is described that

combines the numerical time-dependent Schrödinger equation (TDSE) and the numerical time-dependent

Newtonian equation (TDNE). This approach keeps both the accuracy of quantum calculations and the

speed of classical calculations. It does not use approximate tunneling formulas. It is applied to a recent

experimental result, and we show its successful comparison to extensive TDSE calculations made under

exactly the same conditions.
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Ionization is currently employed as the starting point for
essentially all modern strong-field phenomena. These
include above-threshold ionization [1], high harmonic gen-
eration [2], nonsequential double ionization [3], attosecond
pulse generation [4], molecular ‘‘self-spectroscopy’’ [5],
attosecond timing [6], etc.

Several high-field theoretical methods are of course well
known. Radiative perturbation theory and particularly its
Volkov-extended version, the strong field approximation
[7–9], have been employed for decades. But for treatment
of atomic processes under irradiation with intensities on
the order of 1 PW=cm2, three other methods have mainly
been used to describe and evaluate atomic ionization
dynamics. These are (see [10] for a comparative overview)
(i) direct numerical solution of the time-dependent
Schrödinger equation (TDSE), (ii) direct numerical solu-
tion of the time-dependent Newton equation (TDNE), and
(iii) a partially classical approach in which the electron is
treated classically for the remainder of the laser pulse after
assuming that quantum tunneling first releases the electron
from its binding potential.

Advantages and disadvantages are obvious for each of
these approaches. A direct numerical ab initio solution
of the TDSE [11] is the most desirable approach.
However, the tremendous size of the numerical grid on
which the TDSE is to be integrated and the subcycle time
resolution needed have proven too resource demanding,
particularly for elliptical polarization and circular polar-
ization. Considering that modern experimental data cover a
range of intensities and usually use pulses with random
phases, the TDSE approach is not usable for almost all
tasks of high-field interest.

On the other hand, numerical TDNE integration [12],
simulating the atomic system by pure classical mechanics,
is very fast, equally ab initio and nonperturbative, and
requires only modest computing resources. However, it
necessarily ignores quantum tunneling, while many experi-
ments are performed well inside the tunneling region
(Keldysh parameter � � 1). It is not a surprise that this

pure classical approach can miss a quantitative match with
many high-field experiments.
Regarding approach (iii) [13–16], which has an exten-

sive record of semiquantitative success in conforming
to experimental results [10], its tunneling formulas (e.g.,
[17,18]) contain important initial state parameters that are
unavailable to a pure TDNE method. Unfortunately, these
formulas become progressively less reliable as the laser
field strength approaches or exceeds the overbarrier level
[19]. Besides, it is questionable to start the added classical
trajectory at a manually assigned tunneling exit point,
which can be very far away from the ion core for low
intensities and does not even exist for overbarrier
intensities.
These merits and drawbacks of the existing approaches

motivate a new approach that we present here. It combines
an initial stage that obeys quantum principles with a sub-
sequent fast-compute classical stage. This new approach
can be regarded as a combination of TDSE via (i) and
TDNE via (ii), and it exploits the strength of each. For
simplicity we can call it the SENE (Schrödinger equation,
Newton equation) approach. But interestingly, the SENE
approach is not the same as approach (iii). Instead, SENE
fully utilizes (i) throughout and beyond the electron release
process, and so avoids the presumption of approach
(iii) that dynamical evolution can be treated as beginning
abruptly where tunneling ends.
In brief, SENE first solves for the Schrödinger wave

function. It starts from the initial atomic quantum state, and
continues well beyond electron release. The TDSE part of
the computational task can be done quickly using a rela-
tively small numerical grid near the ion core. It is compat-
ible with intensities either below or above the overbarrier
level. Then a coherent connection formula uses the TDSE
quantum wave function to generate classical trajectories to
be carried forward by TDNE calculations. These reliably
determine the electron’s subsequent motion under the laser
force with very little computational effort. They yield the
electron’s momentum components at the end of the pulse,

PRL 110, 243001 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
14 JUNE 2013

0031-9007=13=110(24)=243001(5) 243001-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.243001


and importantly fully incorporate final-stage Coulomb
effects.

The idea of partitioning the space and treating each
partition separately before connecting them coherently in
order to reduce the computational loads of numerically
tough problems is very attractive. For example, when
dealing with a two-electron system, Grobe et al. used
an algorithm that takes full account of electron-electron
interactions in an inner region and neglects them in the
outer region [20]. Nikolopoulos et al. solve a one-electron
TDSE using an R-matrix basis set in an inner region and
a finite-difference propagation in the outer region [21].
(A similar but more analytically oriented approach is
developed by Torlina and Smirnova [22].) For another
example, Tao and Scrinzi have proposed a method that
connects an inner region TDSE solution with a Volkov
representation in the outer region [23]. Although these
methods share the same space-partition concept, they are
quite different in their details and in the physical prob-
lems to be dealt with.

The innovative core of our method is a coherent ‘‘virtual
detector’’ (VD) network that encircles the interaction cen-
ter, ‘‘detecting’’ the TDSE wave [24]. Further propagation
of the electron is not disturbed by this detection because
our detectors are imaginary. At each integration time step,
the virtual detectors provide numerically the phase and
amplitude of the emerging wave function, from which we
obtain the momentum associated with the quantum wave at
each point on its wave front. The VD technique is able in
this way to obtain the exact quantum momentum distribu-
tion at a distance sufficiently removed from the ionic core
to allow TDNEmethods to be safely used for the remainder
of the laser pulse.

The necessary formulas are easily constructed. Given a
numerical wave function�ð~r; tÞ, the probability flux at the
position of a virtual detector (~rd) can be calculated:

~jð~rd; tÞ ¼ i@

2m
½�ð~rd; tÞr��ð~rd; tÞ � c:c:�: (1)

If one rewrites the wave function in terms of its amplitude
and phase �ð~r; tÞ ¼ Að~r; tÞ exp½i�ð ~r; tÞ�, and substitutes
this expression into Eq. (1), one gets the momentum
from the gradient of the phase:

~kð~rd; tÞ � r�ð ~rd; tÞ ¼ m~jð~rd; tÞ
jAð ~rd; tÞj2

: (2)

Detection was the purpose of the original VD applica-
tion [24], whereas it is used in our method to determine a
reliable starting point for outgoing classical trajectories,
which will be strongly influenced by both the rest of the
laser pulse as well as the ion’s Coulomb attraction. An
illustration of the SENE approach is shown in Fig. 1.
We have applied the SENE method to high-intensity

single ionization under elliptical polarization, a topic of
considerable recent interest [25–28], employing a two-
dimensional wave function in the polarization plane. The
VDs are arranged evenly along a circle of radius 20 a.u., as
illustrated in the left panel of Fig. 1. The actual arrange-
ment is much denser than shown: 400 detectors are placed
along this circle [29]. The numerical grid on which the
TDSE is integrated is from �51:15 to 51.15 a.u. for each
dimension, with a grid spacing of 0.1 a.u. After the quan-
tum wave has been virtually detected and converted to
momenta, it is absorbed in a region starting from radius
35.8 a.u., well beyond the virtual detection circle.
The quantum wave function �ð ~r; tÞ at t ¼ 0 is found

numerically using the imaginary time method with a soft-

core model Coulomb potential VðrÞ ¼ �1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p

[30].
In the example to be analyzed, ionization was induced by

an elliptically polarized laser pulse: ~EðtÞ ¼ E0fðtÞ�
½x̂ sinð!tþ ’Þ þ ŷ" cosð!tþ ’Þ�. Here, " ¼ 0:78, ! ¼
0:062 a:u: corresponds to wavelength 740 nm, ’ is the
carrier-envelope phase (CEP), and fðtÞ ¼ expð�t2=2�2Þ
is the Gaussian pulse envelope with duration 7 fs. All
parameters are chosen to match recent experimental con-
ditions used for helium [31]. To mimic a random CEP,
results from 8 CEPs evenly distributed between (0, 2�)

FIG. 1 (color online). Illustration of the new SENE approach. Left: virtual detectors are positioned along a circle of radius 20 a.u.
from the atom. The actual number of detectors is much denser (see text). Middle: ATDSE wave packet moving rightward is likely to
trigger detectors near the þx axis, with the on-axis detector receiving the strongest signal. Right: Each triggered detector will
immediately initiate an electron trajectory at the same position, with its momentum determined by Eq. (2), and a relative weight
determined by the probability flux (1). The subsequent motion of each electron trajectory in the remainder of the pulse will be
determined by TDNE dynamics.
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were included. The parameter a ¼ 0:28 a:u: is chosen to
match the energy of the numerically found ground state to
the negative of the empirical ionization potential of helium,
which equals 0.9 a.u.

At each time step (1 time step ¼ 0:01 a:u:), the proba-
bility flux at the position of each detector is calculated. An
example of probability flux versus time is shown in Fig. 2,
for intensity 0:4 PW=cm2. One sees that substantial proba-
bility flux only appears during two cycles at the peak of the
pulse. Note that there is a time delay �t of about 0.2 cycles
between the peaks of the pulse and those of the flux. This is
the time needed between electron emission and detection,
recalling that the detectors are placed 20 a.u. away from the
atom. This time delay depends on the laser intensity.

At the same time, each detector that is triggered (above a
preset small threshold value) generates a classical trajec-
tory at the same position, with a momentum determined by
Eq. (2). This trajectory is given a relative weight equal to
the probability flux, determined by Eq. (1). Subsequent
motion of this trajectory will be classical, and determined
by TDNE integration. The momentum of each trajectory at
the end of the pulse will be recorded.

This detector triggering, plus classical trajectory
generation, will be repeated at each time step until the
end of the pulse. The final momentum distribution is
obtained by summing over all classical trajectories with
their relative weights.

We have carried out exact numerical TDSE calculations,
under precisely the same conditions, and compared results
obtained from the SENE approach with them. This means
that the TDSE calculation has been performed using the
same core potential, the same initial state, and the same
laser parameters. The comparison in the end-of-pulse
momentum distributions is shown in Fig. 3. One sees that
the SENE results reproduce all the relevant features of
the TDSE results, such as the orientation angle and the

projections onto individual axes [32], except for the inter-
ference pattern, which originates mainly from wave inter-
ference outside the virtual detection circle and cannot be
reproduced by the SENE approach.
The results do not depend on the number of detectors, as

long as it is not too small. Figure 4 shows the same electron
momentum distributions as shown in the first panel of
Fig. 3, but using 200 (left) and 800 (right) detectors. No
substantial difference is found by using more detectors,
expect for a finer resolution.
The results converge as the detection radius is increased.

Figure 5 compares the momentum projections for three
different detection radii, namely, 15, 20, and 30 a.u.
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FIG. 2 (color online). Probability flux registered at the detec-
tors versus time (zero is the pulse peak) for the model He atom
under intensity 0:4 PW=cm2. At each time step, 400 probability
flux values are dotted, filling the space below the flux envelope
curve. The red curve is the relative laser field strength. �t is the
time delay between emission and detection.
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FIG. 4 (color online). The same electron momentum distribu-
tions as shown in the first panel of Fig. 3, but using different
numbers of virtual detectors. The left panel uses 200 VDs and
the right panel uses 800 VDs.
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FIG. 3 (color online). Electron momentum distribution ob-
tained from the SENE approach (top left) and from numerical
TDSE calculations (top right) under exactly the same conditions.
The laser intensity is 0:4 PW=cm2. The top two panels have been
further compared by projecting onto the Px axis (bottom left),
onto the Py axis (bottom middle), and by angular scanning from

0 to 2� (bottom right), with the red solid curves for SENE and
the blue dashed curves for TDSE. The momentum tilt angle �
has been marked on the first panel as the angle between the Py

axis and the most probable direction of distribution.
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To avoid contamination from the finite spreading of the
ground state, the detection radius should not be too small.
But one can see good convergence even for detection
radius ¼ 15 a:u:

We can immediately employ the SENE approach in
relation to the helium data obtained in the experiments
mentioned [31]. Under elliptical polarization the ion-
electron Coulomb force prevents the momentum distribu-
tion being symmetric against the Py axis and leads to an

angular tilt with respect to this axis, as illustrated in the first
panel of Fig. 3 (see [31] for details). Therefore, it is
important to take the ion Coulomb potential fully into
account. This is automatically done in the SENE approach.

Figure 6 shows the experimental intensity dependence
of the tilt angle, as well as the corresponding SENE pre-
dictions. Good overall quantitative agreement is evident.
Our results, obtained for a single-electron atom, support
the conclusion drawn in [31] that for helium, the effect of
the remaining electron on the emission of the first electron
is negligible.

In summary, we have presented the SENE approach to
atomic electron response under high laser fields. This
approach coherently joins numerical solutions of TDSE
and TDNE types at a radius where the electron has, to
excellent approximation, already been freed by fully quan-
tum dynamical evolution. No tunneling event is assumed or

imposed. The SENE approach starts from the quantum
atomic initial state and propagates the wave function on a
relatively small numerical grid. Once the outflowing wave
reaches the virtual detectors, classical trajectories can
safely be initiated. The reliability of classical trajectories
beyond the ionization zone has been suggested earlier [33],
using masked quantum waves in double ionization calcu-
lations. The classical trajectories continue to evolve non-
trivially and are followed numerically until the end of the
pulse. The weight of each classical trajectory is determined
by the probability flux received at the corresponding virtual
detector.
The SENE approach has been carefully tested by

comparing to numerical TDSE calculations that were
made under exactly the same conditions—the same ion
core potential, the same initial state, and the same laser
parameters. The SENE approach is shown to be able to
reproduce all the relevant features of the TDSE results. The
results have been checked to be largely independent of
the number of virtual detectors and to converge quickly
as the detection radius increases.
Finally, because only a small quantum interaction zone

is required near the ion core, the SENE approach is not
limited to one electron. The extension to two electrons will
be used for direct study throughout the ionization process
of the effect of electron correlation without imposing a
tunneling approximation. We note that standard Volkov
waves could be considered to replace the classical TDNE
outgoing-electron momenta. However, because the SENE
automatically and nonperturbatively includes the effects of
final-stage Coulomb forces, it seems likely to remain supe-
rior until a Volkov wave function that is fully Coulomb
modified (unavailable since 1935) is found.
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