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Early time electron-positron correlation in vacuum pair-production in an external field is investigated. The
entangled electron and positron wave functions are obtained analytically in the configuration and momentum
spaces. It is shown that, relative to that of the one-dimensional theory, two- and three-dimensional calculations
yield enhanced spatial correlation and broadened momentum spectra. In fact, at early times the electron and
positron almost coincide spatially. The correlation also depends on the direction of the applied field. For the
spatial correlation, the transverse correlation is stronger than the longitudinal correlation.

PACS: 12.20.−m, 03.65.Ud, 42.50.−p DOI: 10.1088/0256-307X/31/1/011203

Pair creation in a vacuum can be considered as a
‘vacuum breakdown’ by a supercritical field.[1] Since
Sauter[2] and Schwinger[3] obtained the pair creation
rate in a static field, many theoretical and experimen-
tal studies on this topic have been performed.[4−12]

In particular, it has been shown that the pair cre-
ation rate can be improved by tailoring the applied
field.[13−16] However, the pair birth process itself, such
as the space and momentum correlations between
the just-created electrons and positrons, is less well
studied.[6,17,18]

In this Letter, using computational quantum field
methods[19] we investigate the electron-positron joint
probability distributions in the configuration and mo-
mentum spaces. As in Ref. [6], we are interested in the
very early stage, namely at times 𝑡 ≪ 1/𝑐2 after the
applied potential is turned on. The one-dimensional
(1D) spatial density distribution[6] is generalized to
higher dimensions. The correlated spatial and mo-
mentum distributions, parallel and perpendicular (re-
ferred to as the longitudinal and transverse correla-
tions, respectively) to the external field are obtained.

In our model, we use the Sauter potential[2] 𝑉 (𝑟) =
𝑉0[1 + tanh(𝑥/𝑊 )]/2, where 𝑊 is the spatial extent
of the corresponding electric field. The potential is
abruptly turned on at 𝑡=0. The evolution of the field
operator Ψ̂(𝑟, 𝑡) is given by the Dirac equation[20]

𝑖𝜕𝑡Ψ̂(𝑟, 𝑡) = (𝑐𝛼𝑃 + 𝛽𝑐2 + 𝑉 )Ψ̂(𝑟, 𝑡), where 𝛼 and
𝛽 are the Dirac matrices, 𝑐 is the vacuum light speed,
𝑃 is the momentum operator, and 𝑉 is the external

potential. The field operator can be written in terms
of the electron creation and annihilation operators as

Ψ̂(𝑟, 𝑡) =
∑︁
𝑝

�̂�𝑝(𝑡)𝑊𝑝(𝑟) +
∑︁
𝑛

𝑑†
𝑛(𝑡)𝑊𝑛(𝑟)

=
∑︁
𝑝

�̂�𝑝𝑊𝑝(𝑟, 𝑡) +
∑︁
𝑛

𝑑†
𝑛𝑊𝑛(𝑟, 𝑡), (1)

where 𝑊𝑝(𝑛)(𝑟) is the energy eigenfunction of
the field-free Dirac equation, and 𝑊𝑝(𝑛)(𝑟, 𝑡) =
⟨𝑟|𝑈(𝑡)|𝑝(𝑛)⟩ is the solution of the time-dependent
Dirac equation with the time evolution opera-
tor 𝑈(𝑡) = exp[−𝑖(𝑐𝛼𝑃 + 𝛽𝑐2 + 𝑉 )𝑡]. The
electron-positron wave function is given by the
positive-frequency parts of the field operator and
its charge-conjugated field operator 𝜑(𝑟1, 𝑟2, 𝑡) =

⟨0|Ψ̂ (+)(𝑟1, 𝑡) ⊗ Ψ̂
(+)
𝑐 (𝑟2, 𝑡)|0⟩, where 𝑟1 and 𝑟2 are

the spatial coordinates of the created electron and
positron, respectively. Unless otherwise stated, in this
work atomic units (𝑒 = 𝑚e = ~ = 1) are used. Based
on the eigenstates of the free Dirac operator, we can
express the pair wave function as[6]

𝜑(𝑟1, 𝑟2, 𝑡) =
∑︁
𝑛

∑︁
𝑝

𝐴𝑝𝑛(𝑡)𝑊𝑝(𝑟1) ⊗ 𝐶𝑊 *
𝑛(𝑟2), (2)

where the matrix 𝐶 is the charge-conjugated opera-
tor and 𝐴𝑝𝑛(𝑡) =

∑︀
𝑃 ⟨𝑝|𝑈(𝑡)|𝑃 ⟩⟨𝑛|𝑈(𝑡)|𝑃 ⟩* is the

expansion coefficient.
For 𝑡 ≪ 1/𝑐2, up to 𝑂(𝑡2) accuracy one ob-

tains 𝐴𝑝𝑛 = 𝑖⟨𝑝|𝑉 |𝑛⟩𝑡 = 𝑖𝑉𝑝𝑛𝑡. Thus, the wave
function 𝜑(𝑟1, 𝑟2, 𝑡) = 𝜑0(𝑟1, 𝑟2)𝑡 grows linearly with
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time. One can then explore the pair creation pro-
cess in this early-time regime by following the re-
duced time-independent wave function 𝜑0(𝑟1, 𝑟2) =
𝑖
∑︀

𝑛

∑︀
𝑝 𝑉𝑝𝑛𝑊𝑝(𝑟1) ⊗ 𝐶𝑊 *

𝑛(𝑟2). To investigate
the spatial entanglement between the electron and
positron, we consider the spatial joint probability dis-
tribution 𝜌(𝑟1, 𝑟2) = |𝜑0(𝑟1, 𝑟2)|2 for the electron at
𝑟1 and the positron at 𝑟2. The probability of finding
the pair is given by[21] 𝑃 (𝑡) = 𝑡2

∫︀
𝑑𝑟1𝑑𝑟2𝜌(𝑟1, 𝑟2) =

𝑡2
∫︀
𝑑𝑝𝑑𝑛|𝑉𝑝𝑛|2. The corresponding spectrum of the

spatial joint probability distribution (i.e., the momen-
tum joint probability distribution) is 𝜌(𝑝,𝑛) = |𝑉𝑝𝑛|2,
which measures the electron with momentum 𝑝 and
the positron with momentum 𝑛.

According to the Dirac theory, the wave functions
of the free eigenstates are

𝑊𝑝(𝑟) =
1

(2𝜋)3/2

√︃
𝑐2

𝐸𝑝
𝜇𝑝 exp(𝑖𝑝𝑟), (3)

with the eigenvalue 𝐸𝑝 =
√︁
𝑐2𝑝2𝑥 + 𝑐2𝑝2𝑦 + 𝑐2𝑝2𝑧 + 𝑐4

and

𝑊𝑛(𝑟) =
1

(2𝜋)3/2

√︃
𝑐2

𝐸𝑛
𝜈𝑛 exp(−𝑖𝑛𝑟), (4)

with the eigenvalue −𝐸𝑛 =−
√︁

𝑐2𝑛2
𝑥+𝑐2𝑛2

𝑦+𝑐2𝑛2
𝑧+𝑐4,

where 𝜇𝑝 and 𝜈𝑛 are the Dirac 4D spinors of the elec-
tron and positron, respectively. Because the external
potential 𝑉 depends only on 𝑥, the simplified expan-
sion coefficient 𝑉𝑝𝑛 = ⟨𝑝|𝑉 (𝑥)|𝑛⟩ should contain the
factors 𝛿(𝑝𝑦 + 𝑛𝑦) and 𝛿(𝑝𝑧 + 𝑛𝑧), which serve to en-
sure momentum conservation in the transverse direc-
tions. For simplicity, for the 2D case we can choose the
spinors as[22] 𝜇𝑝 =

√︀
(𝐸𝑝 + 𝑐2)/2𝑐2(1, 0, 0, 𝑐𝑝+/(𝐸𝑝 +

𝑐2)) and 𝜈𝑛 =
√︀

(𝐸𝑛 + 𝑐2)/2𝑐2(𝑐𝑛−/(𝐸𝑛+𝑐2), 0, 0, 1),
where 𝑝+ = 𝑝𝑥 + 𝑖𝑝𝑦 and 𝑛− = 𝑛𝑥 − 𝑖𝑛𝑦. There is no
need to take all of the spinors into account because
the nonzero 8 components of 4×4=16 entangled wave
function can be divided into two sets of 4-component
form and they are conjugate with each other in the
2D system. Thus, without losing validity, we need
only one set of 4 components; for example, 𝜑𝑖

0(𝜉𝑥, 𝜉𝑦),
where 𝑖=1,2,3,4. In the limit of 𝑊 = ∞, the potential
approximates to 𝑉 (𝑥, 𝑦) = 𝑉0(1 + 𝑥/𝑊 )/2. The 2D
reduced wave function 𝜑0(𝜉𝑥, 𝜉𝑦) (here and through-
out the paper we omit 𝑖, which does not cause any
confusion) is then

𝜑0(𝜉𝑥, 𝜉𝑦)=
𝑉0𝑐

32𝑊𝜋2

∫︁
𝑑𝑃𝑥𝑑𝑃𝑦

𝐸𝑃𝑥𝑃𝑦 +1+𝑃 2
𝑦 +𝑖𝑃𝑥𝑃𝑦

𝐸3
𝑃𝑥𝑃𝑦

×

⎛⎜⎜⎜⎜⎝
1

− 𝑃𝑥+𝑖𝑃𝑦

1+𝐸𝑃𝑥𝑃𝑦

𝑃𝑥+𝑖𝑃𝑦

1+𝐸𝑃𝑥𝑃𝑦

−
(︁

𝑃𝑥+𝑖𝑃𝑦

1+𝐸𝑃𝑥𝑃𝑦

)︁2

⎞⎟⎟⎟⎟⎠ exp(𝑖𝑃𝑥𝜉𝑥) exp(𝑖𝑃𝑦𝜉𝑦), (5)

where 𝐸𝑃𝑥𝑃𝑦
=

√︁
1 + 𝑃 2

𝑥 + 𝑃 2
𝑦 , 𝜉𝑥 = 𝑐(𝑥1 − 𝑥2),

𝜉𝑦 = 𝑐(𝑦1−𝑦2), and 𝑃𝑥 = (𝑝𝑥−𝑛𝑥)/2𝑐 and 𝑃𝑦 = 𝑝𝑦/𝑐
are the relative momenta in the 𝑥 and 𝑦 directions
measured by 𝑐. Clearly, except for a constant factor
the momentum-space wave function 𝜑0(𝑃𝑥, 𝑃𝑦) can be
regarded as the Fourier transformation of 𝜑0(𝜉𝑥, 𝜉𝑦),
or

𝜑0(𝑃𝑥, 𝑃𝑦) =
𝐸𝑃𝑥𝑃𝑦

+ 1 + 𝑃 2
𝑦 + 𝑖𝑃𝑥𝑃𝑦

𝐸3
𝑃𝑥𝑃𝑦

·

⎛⎜⎜⎜⎜⎝
1

− 𝑃𝑥+𝑖𝑃𝑦

1+𝐸𝑃𝑥𝑃𝑦

𝑃𝑥+𝑖𝑃𝑦

1+𝐸𝑃𝑥𝑃𝑦

−
(︁

𝑃𝑥+𝑖𝑃𝑦

1+𝐸𝑃𝑥𝑃𝑦

)︁2

⎞⎟⎟⎟⎟⎠ , (6)

so that the momentum spectrum is

𝜌(𝑃𝑥, 𝑃𝑦) = |𝜑0(𝑃𝑥, 𝑃𝑦)|2 = 4
1 + 𝑃 2

𝑦

(1 + 𝑃 2
𝑥 + 𝑃 2

𝑦 )2
. (7)
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Fig. 1. (Color online) (a) The spatial density distribution
𝜌(𝜉𝑥) for the 1D case. (b) The corresponding momen-
tum spectrum 𝜌(𝑃𝑥). The circles represent the results for
𝑊 = ∞. The data are scaled to match at 𝜉𝑥 = 0 and
𝑃𝑥 = 0 for better graphical clarity.

To see more detail of the relation between the
joint distributions in configuration and momentum
spaces, we first consider a 1D system[6] by setting
𝑝𝑦 = 𝑛𝑦 = 0. Without loss of generality, we can as-
sume that the positron is always detected at 𝑥 = 0.
In Fig. 1, we show the joint distribution in the pres-
ence of fields of different widths. As one can see, if
the spatial extent of the field is wider than 3𝜆𝑒, where
𝜆𝑒 is the electron Compton wavelength, then the joint
distributions agree with the analytical result for an
infinite-width field, shown as circles in Fig. 1. As the
field width becomes narrower, the average distance
between the particles shrinks until it vanishes.[6] As
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is expected, the corresponding momentum spectrum
broadens until the width becomes infinity.

Figure 2 shows the electron joint distribution ob-
tained from the analytical wave functions Eqs. (5)
and (6) for a quasi-2D system[23] with finite 𝑦 mo-
menta. We can see that, as 𝑝𝑦 increases, the spatial
density distribution in the 𝑥-direction becomes nar-
rower, accompanied by broadening of the correspond-
ing momentum spectrum, as expected since the spatial
distribution width ∆𝑥 and the momentum spectrum
width ∆𝑃𝑥 should satisfy the uncertainly principle,
∆𝑥∆𝑃𝑥 ∼ 1. It can also be verified that in the 1D
limit (𝑝𝑦 = 0), both the spatial and momentum dis-
tributions agree with that shown in Fig. 1.
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Fig. 2. (Color online) The electron-positron spatial den-
sity distribution 𝜌(𝜉𝑥) in (a) and the corresponding mo-
mentum spectrum 𝜌(𝑃𝑥) in (b) in the quasi-2D case for
different given 𝑃𝑦 . The analytical wave function Eqs. (5)
and (6) are used. The data are scaled to match at 𝜉𝑥 = 0
and 𝑃𝑥 = 0.

Now we consider a full 2D system. For a field of in-
finite width we can express the spatial joint density as
𝜌(𝜉𝑥, 𝜉𝑦) = |𝜑0(𝜉𝑥, 𝜉𝑦)|2. The longitudinal and trans-
verse joint densities in different directions are given
by 𝜌(𝜉𝑥) =

∫︀
𝑑𝜉𝑦𝜌(𝜉𝑥, 𝜉𝑦) and 𝜌(𝜉𝑦) =

∫︀
𝑑𝜉𝑥𝜌(𝜉𝑥, 𝜉𝑦).

Since 𝜌(𝜉𝑥 = 0, 𝜉𝑦 = 0), 𝜌(𝜉𝑥 = 0), and 𝜌(𝜉𝑦 = 0)
are all divergent (i.e., (0, 0) is a singular point of the
density 𝜌) we cannot scale the spatial density distri-
butions to match at 𝜉𝑥=0 or/and 𝜉𝑦=0, as carried out
above. On the other hand, Eq. (7) shows that, in the
dual space we can still obtain the momentum spec-
trum, which qualitatively reflects the properties of the
spatial density. The longitudinal and transverse com-
ponents of the momentum spectrum are

𝜌(𝑃𝑥)=

∫︁
𝑑𝑃𝑦𝜌(𝑃𝑥, 𝑃𝑦)=

2𝜋

(1+𝑃 2
𝑥 )1/2

+
2𝜋

(1+𝑃 2
𝑥 )3/2

,

𝜌(𝑃𝑦) =

∫︁
𝑑𝑝𝑥𝜌(𝑃𝑥, 𝑃𝑦) =

2𝜋

(1 + 𝑃 2
𝑦 )1/2

. (8)
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Fig. 3. (Color online) The momentum spectrum 𝜌(𝑃𝑥)
and 𝜌(𝑃𝑦) in the 2D case for different 𝑊 . The circles are
the spectra in the 1D case. The data are scaled to match
at (𝑃𝑥, 𝑃𝑦) = 0.
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Fig. 4. (Color online) The density distributions 𝜌(𝜉𝑥)
and 𝜌(𝜉𝑦) in the 2D case for 𝑊 = ∞. The data are
not scaled to match at 𝜉𝑥, 𝜉𝑦 = 0 because of the diver-
gence at this point. Instead they are scaled to match at
𝜉𝑥, 𝜉𝑦 = 0.00005.

In Fig. 3 we show the momentum spectrum in the
2D system for different field widths. For comparison,
the corresponding distributions in the 1D system are
also shown (circles). Equation (8) is used for the field
width 𝑊 = ∞. The distributions corresponding to
the other field widths are obtained numerically. One
sees that the momentum spectra in the 2D system are
much wider than that in the 1D system. We can, thus,
expect that the density distribution in 2D is much nar-
rower than that in 1D; that is, in the 2D system the
electron-positron momentum correlation is weakened,
while the spatial correlation is enhanced. Moreover,
from Fig. 3 we can see that the transverse spectrum
is always wider than the longitudinal one, so that one
can expect that 𝜌(𝜉𝑦) is always narrower than 𝜌(𝜉𝑥),
or the electron-positron spatial correlation perpendic-
ular to the external field is stronger. In order to ver-
ify these conclusions, the longitudinal and transverse
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density distributions of the 2D system are obtained
directly by numerically solving Eq. (5) together with
the definitions of 𝜌(𝜉𝑥) and 𝜌(𝜉𝑦). The results are
shown in Fig. 4. Clearly, both 𝜌(𝜉𝑥 = 0) and 𝜌(𝜉𝑦 = 0)
are divergent. Moreover, we can clearly see that their
widths are narrower than that in the 1D case and the
width of 𝜌(𝜉𝑦) is narrower than that of 𝜌(𝜉𝑥).

Similarly, for the 3D system we can obtain analyt-
ically for the field of width 𝑊 = ∞ the joint momen-
tum spectrum

𝜌(𝑃 ) = 8
1 + 𝑃 2

𝑦 + 𝑃 2
𝑧

(1 + 𝑃 2
𝑥 + 𝑃 2

𝑦 + 𝑃 2
𝑧 )2

, (9)

where 𝑃𝑧 = 𝑝𝑧/𝑐 and 𝑃 = (𝑃𝑥, 𝑃𝑦, 𝑃𝑧) and all of
the four spinors are taken into account. We can see
that 𝜌(𝑃𝑥)/𝜌(𝑃𝑥 = 0) → 1, so that the width of
the momentum spectrum in the parallel direction ap-
proaches infinity, ∆𝑃𝑥 → ∞, and the width of the
spatial distribution approaches zero, ∆𝜉𝑥 → 0. The
same situation occurs for the perpendicular directions,
namely, 𝜌(𝑃𝑦)/𝜌(𝑃𝑦 = 0) → 1, 𝜌(𝑃𝑧)/𝜌(𝑃𝑧 = 0) → 1,
∆𝜉𝑦 → 0, and ∆𝜉𝑧 → 0. Accordingly, in the 3D sys-
tem the electron and positron are pair-created at prac-
tically the same location. This result differs strongly
from that of the 1D case, where the average spatial
extent of pair creation is of order 𝜆𝑒.

The enhancement comes from the coupling influ-
ence of the momenta in the different directions, which
can be illuminated from Eqs. (5) and (6). For exam-
ple, in the quasi-2D case the transverse momentum
makes the longitudinal momentum spectrum broaden
with the corresponding spatial distribution approach-
ing zero slowly as momentum increases compared to
the 1D case. In other words, the coupling of entan-
gled wave function due to different dimensions leads to
the characteristic that the spatial correlation degree is
greatly increased.

In summary, we have considered electron-positron
correlations in the pair-creation process during the
early stage. Our results suggest that the correlations
in configuration and momentum spaces exhibit recip-
rocal duality, which is consistent with the uncertainty
principle; that is, ∆𝑃𝑥∆𝑥 ≈ 1. It is found that the
correlations depend on the dimension of the computa-
tional space. Specifically, the particle pairs are created
almost at the same location in the 3D system while

the average distance between the particles is finite in
lower-dimensional spaces for the infinite width field.
We also find that the transverse spatial correlation is
stronger than the longitudinal correlation in the 2D
system and in the quasi-2D system, the longitudinal
spatial correlation increases with the transverse mo-
mentum.

Authors thank Professor Chen Shigang and Pro-
fessor Guo Xinheng for helpful discussions.

References
[1] Greiner W, Müller B and Rafelski J 1985 Quantum Elec-

trodynamics of Strong Field (Berlin Heidelberg: Springer-
Verlag)

[2] Sauter F 1931 Z. Phys. 69 742
[3] Schwinger J 1951 Phys. Rev. 82 664
[4] Kluger Y, Eisenberg J M, Svetitsky B, Cooper F and Mot-

tola E 1991 Phys. Rev. Lett. 67 2427
[5] Alkofer R, Hecht M B, Roberts C D, Schmidt S M and

Vinnik D V 2001 Phys. Rev. Lett. 87 193902
[6] Krekora P, Su Q and Grobe R 2004 Phys. Rev. Lett. 93

043004
[7] Burke D L, Field R C, Horton-Smith G, Spencer J E et al

1997 Phys. Rev. Lett. 79 1626
[8] Chen H, Wilks S C, Bonlie J D, Liang E P et al 2009 Phys.

Rev. Lett. 102 105001
[9] Chen H, Wilks S C, Meyerhofer D D, Bonlie J et al 2010

Phys. Rev. Lett. 105 105003
[10] Xie B S, Mohamedsedik M and Dulat S 2012 Chin. Phys.

Lett. 29 021102
[11] Li Z L, Sang H B and Xie B S 2013 Chin. Phys. Lett. 30

071201
[12] Sang H B, Jiang M and Xie B S 2013 Chin. Phys. Lett. 30

111201
[13] Blaschke D B, Prozorkevich A V, Roberts C D, Schmidt S

M and Smolyansky S A 2006 Phys. Rev. Lett. 96 140402
[14] Jiang M, Su W, Lu X, Sheng Z M, Li Y T, Li Y J, Zhang

J, Grobe R and Su Q 2011 Phys. Rev. A 83 053402
[15] Ridgers C P, Brady C S, Duclous R et al 2012 Phys. Rev.

Lett. 108 165006
[16] Tang S, Xie B S, Lu D, Wang H Y, Fu L B and Liu J 2013

Phys. Rev. A 88 012106
[17] Krekora P, Grobe R and Su Q 2004 Phys. Rev. Lett. 92

040406
[18] Krekora P, Su Q and Grobe R 2005 J. Mod. Opt. 52 489
[19] Braun J W, Su Q and Grobe R 1999 Phys. Rev. A 59 604
[20] Schweber S S 1962 An Introduction to Relativistic Quantum

Field Theory (New York: Harper & Row)
[21] Krekora P, Cooley K, Su Q and Grobe R 2005 Laser Phys.

15 282
[22] Greiner W 2000 Relativistic Quantum Mechanics: Wave

Equations 3rd edn (Berlin Heidelberg: Springer-Verlag)
[23] Su W, Jiang M, Lv Z Q, Li Y J, Sheng Z M, Grobe R and

Su Q 2012 Phys. Rev. A 86 013422

011203-4

http://cpl.iphy.ac.cn
http://dx.doi.org/10.1007/BF01339461
http://dx.doi.org/10.1103/PhysRev.82.664
http://dx.doi.org/10.1103/PhysRevLett.67.2427
http://dx.doi.org/10.1103/PhysRevLett.87.193902
http://dx.doi.org/10.1103/PhysRevLett.93.043004
http://dx.doi.org/10.1103/PhysRevLett.79.1626
http://dx.doi.org/10.1103/PhysRevLett.102.105001
http://dx.doi.org/10.1103/PhysRevLett.105.105003
http://dx.doi.org/10.1088/0256-307X/29/2/021102
http://dx.doi.org/10.1088/0256-307X/30/7/071201
http://dx.doi.org/10.1088/0256-307X/30/11/111201
http://dx.doi.org/10.1103/PhysRevLett.96.140402
http://dx.doi.org/10.1103/PhysRevA.83.053402
http://dx.doi.org/10.1103/PhysRevLett.108.165006
http://dx.doi.org/10.1103/PhysRevA.88.012106
http://dx.doi.org/10.1103/PhysRevLett.92.040406
http://dx.doi.org/10.1080/09500340412331303243
http://dx.doi.org/10.1103/PhysRevA.59.604
http://dx.doi.org/10.1103/PhysRevA.86.013422

	Title
	Eq. (1)
	Eq. (2)
	Eq. (3)
	Eq. (4)
	Eq. (5)
	Eq. (6)
	Eq. (7)
	Fig. 1
	Fig. 2
	Eq. (8)
	Fig. 3
	Fig. 4
	Eq. (9)
	References

