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Coherence dynamics of a two-mode Bose-Einstein condensate coupled with the environment
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We investigate the coherence dynamics of a two-mode Bose-Einstein condensate coupled with the environment
in the mean-field approximation. We give an analytical result of the time-average coherence in the absence of
system-environment coupling, and find that the time-average coherence attains its maximum value at the critical
point which corresponds to the boundary between the self-trapping regime and the Josephson oscillation regime.
The effect of noise on dynamical coherence is also considered by analyzing the couplings of the condensate to
the environment. With the first kind of coupling, the coherence finally stabilizes at a fixed value. Meanwhile, we
show that the presence of the noise can even enhance the coherence for some particular interaction. With the
second kind of coupling as collisional dephasing, the noise leads a sudden transition of the coherence which then
subjects to an exponential decay.

DOI: 10.1103/PhysRevA.88.063642 PACS number(s): 03.75.Gg, 03.75.Kk

I. INTRODUCTION

The physics of Bose-Einstein condensates (BECs) in a
double-well potential has made enormous progress in the
last decade, as it is an excellent model system for a variety
of quantum fields such as condensed matter physics or
nonlinear dynamics [1–6]. With rapid experimental progress
in manipulation of cold atoms, almost every parameter can
be tuned in the experiment. For example, the intracomponent
and intercomponent interaction constants can be controlled
by tuning the atomic s-wave scattering length, and also the
energy bias between the two wells [7–11]. By tuning the pa-
rameters, the BECs in a double well exhibit several fascinating
phenomena, such as quantum tunneling, self-trapping, and
coherent oscillations [12–29]. A most prominent feature of
its tunneling and coherence is the nonlinear dynamics arising
from the atom-atom interaction. Recently, many theoretical
works showed that the coherence between the two wells
exhibited different behaviors in the Fock regime, Josephson
regime, and Rabi regime [30,31].

In the past few years, phenomena such as self-trapping and
Josephson oscillation were observed in the experiments [5].
However, in the present experimental conditions, the conden-
sates usually coexist with noncondensed thermal clouds and
atom loss is also unavoidable; it means the condensate should
be regarded as an open system coupled with the environment.
Many theoretical works have investigated the effect of the
noise on the BECs in the double-well condensate, and found it
leads to the decay of quantum self-trapping [32], decoherence
[33–35], particle loss [36–39], and dephasing [40–43]. The
phenomenon of the dephasing has even been observed in
experiments [44,45]. Recently, it was shown that the maximum
pin squeezing can be reached in the presence of particle
losses [39]. Researchers even found that the dissipations can
enhance the quantum coherence between the two wells for
some particular conditions [46,47]. Hence, the characterization
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of the double-well potential coupled with the environment is
interesting. Treating the environment as a Markovian reservoir,
the dynamics of the condensate atoms could be characterized
by the master equations [48–50]. As we know, the different
types of coupling with the environment have different effect
on the dynamics of the BECs. In Ref. [51], it is shown that the
different kinds of BEC-environment coupling lead to different
final population imbalance of the BEC in a double well. As
we know, the relative phase and the degree of coherence are
believed to affect the dynamical properties of BECs in the
double well [31], and it is worthwhile to study the coherence
dynamics. In this work, we focus on the dynamics of coherence
between the two wells for different kinds of BEC-environment
coupling.

In this paper, we study the effect of BEC-environment
coupling on the dynamics of a BEC in a double-well potential.
We investigate the dynamics of coherence between the two
wells within a mean-field framework. For the closed system,
i.e., no coupling between the system and the environment, we
give an analytical result of the time-average coherence and
show that it attains maximum value at the critical point which
corresponds to the boundary between the Josephson oscillation
and self-trapping regimes. We also study the dynamics of
coherence under two different kinds of BEC-environment
coupling. With the first kind of coupling dominating, the
coherence finally stabilizes at a fixed value. We also show
the coherence enhancement in the presence of noise under
some specific conditions. For the second kind of condensate-
environment coupling such as collisional dephasing, we find
that the noise induces a sudden transition of the coherence in
the process of evolution, and then the coherence is subject to
an exponential decay.

The paper is organized as follows. In Sec. II, we give a
brief discussion of the two-well potential system in the mean-
field approximation and study the dynamics of the coherence
in the absence of condensate-environment coupling. Then, in
Sec. III, we discuss the coherence under two different kinds
of the condensate-environment coupling. Finally, a summary
is given in Sec. IV.
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II. MODEL

We consider two coupled BECs in a double well; the system
can be described by the Hamiltonian [13,14]

Ĥ = ĤL + ĤR + Ĥint + Ĥlas, (1)

where

ĤL = ωLâ
†
LâL + ULL

2
â
†
Lâ

†
LâLâL,

ĤR = ωRâ
†
RâR + URR

2
â
†
Râ

†
RâRâR ,

Ĥint = ULRâ
†
Lâ

†
RâRâL,

Ĥlas = v

2
(â†

LâRe−i�t + â
†
RâLei�t ).

Here, HL,R represents the evolution of atoms in the left
and right wells, respectively, Hint represents the interaction
between atoms in the left and right wells due to collisions, and
Hlas represents the coupling between the two wells induced
by the laser detuned by � from the Raman resonance. â

(†)
R

and â
(†)
L are the bosonic annihilation (creation) operators for

the right and left wells, respectively. The parameter ULL,RR

is the effective self-interaction of atoms, v is the effective
Rabi frequency which describes the coupling between two
wells, and ULR is the cross interaction. In the following,
we consider the condensates situated in the individual wells
are merely weakly coupled, i.e., the cross interaction ULR is
much smaller than the self-interaction ULL,RR , therefore the
interaction Hint can be neglected. In this work, we focus on the
case that the atoms condensate in a symmetric double well,
then the Hamiltonian (1) (with constant terms dropped) can be
remarkably simplified as [1,12,52]

Ĥ = c

2N
(â†

RâR − â
†
LâL)2 + v

2
(â†

RâL + â
†
LâR), (2)

where 2c/N = ULL = URR . The detailed derivation of this
Hamiltonian is provided in the Appendix.

If the particle number is sufficiently large, the system can
be well described in a mean-field approximation. For such
an approximation, the dynamics of the system is described
by a classical Hamiltonian H = 〈�GP | Ĥ |�GP 〉 /N , in which
|�GP 〉 = 1/

√
N !(aRâ

†
R + aLâ

†
L)N |0〉 is the coherent superpo-

sition state and N is the particle number. The coefficients aR

and aL are the probability amplitudes of atoms in the right and
left wells, respectively. Without loss of generality, aR and aL

can be represented as |aR|eiθR and |aL|eiθL , respectively.
By introducing the population difference s = |aL|2 − |aR|2

and the relative phase θ = θR − θL. The classical Hamiltonian
can be reduced to [2,3,12]

H = c

2
s2 + v

√
1 − s2 cos θ , (3)

where s and θ are canonical conjugates with ṡ = −∂H/∂θ ,
θ̇ = ∂H/∂s. According to the expression of the Hamiltonian
(3), their equations of motions are [2,3,12]

ṡ = v
√

1 − s2 sin θ , θ̇ = cs − vs√
1 − s2

cos θ . (4)

We first investigate the dynamics of the coherence in
the absence of BEC-environment coupling, which can be
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FIG. 1. (Color online) For initial condition s = 1 and relative
phase θ = 0, coherence |ρ12| evolves with time. Dotted green, solid
red with dots, black dashed, and dashed-dotted blue lines correspond
to c/v = 1,2,3,4, respectively (left column). Time average of
coherence |ρ̄12| as a function of parameter c/v (right column). The
circles are for analytic formula (11) and the blue line is for numerical
simulation.

characterized by one element of the reduced single-particle
density matrix |ρ12| with the definition ρ

(1)
i,j = 1

N
〈â†

i âj 〉, with
the mode indices i, j = R, L. Clearly, RR and LL represent
the population in the right and left wells, respectively.
According to Eq. (4), the equation of motion for |ρ12| is

d|ρ12|
dt

= d
√

1 − s2

2 dt
. (5)

In Fig. 1, we plot the time evolution of |ρ12| and its time
average |ρ̄12| with the initial condition θ = 0 and s = 1 .
It can be found that |ρ12| oscillates with different periods
for different interaction strengths c/v. When c/v < 2, the
amplitude of the oscillation is independent of the interaction
strength and equal to 0.5, meanwhile the period decreases with
increasing c/v. However, when c/v > 2, the amplitude de-
creases with increasing the interaction and the period increases
with increasing the interaction. Hence, |ρ̄12| will increase
with increasing interaction in the regime of c/v < 2, while
it will decrease with increasing interaction when c/v > 2.

The above phenomenon can be well understood by analyz-
ing the classical Hamiltonian system on the phase space. In
Fig. 2, we plot the trajectories in phase space for two different
parameters. For the classical Hamiltonian system (3), we can
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FIG. 2. (Color online) Trajectories on the phase space of the
classical Hamiltonian system with c = v (left column) and c = 3v

(right column).
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obtain the period T of a given trajectory from the integral [17]

T = −
∮

1/(∂H/∂θ )ds, (6)

and the time average |ρ12| for it from

|ρ̄12| = (1/T )
∮

|ρ12|(dt/d|ρ12|)d|ρ12|, (7)

in which the integral path is along the trajectory. For the
trajectory with initial atoms condensate in the left well (i.e.,
s = 1), we have H (s = 1) = c/2. Thus, from Eqs. (3) and (4),
we obtain

T =
{

4√
4v2−c2 K

(
c2

c2−4v2

)
, c < 2v

−4√
c2−4v2 Im

[
K

(
c2

c2−4v2

)]
, c > 2v

(8)

which agree well with the result in Ref. [52]. In the above
equation, K(m) is the complete elliptic integral of the first
kind and defined as

K(m) =
∫ π/2

0

dθ√
(1 − m sin2 θ )

. (9)

According to Eqs. (5) and (7), we have

|ρ̄12| =
⎧⎨
⎩

1
T

∫ 1
−1

ds√
4v2−c2(1−s2)

, c < 2

1
T

∫ 1√
1−(2v/c)2

ds√
4v2−c2(1−s2)

, c > 2v.
(10)

Here, we have used the relation cos θ = c
√

1 − s2/2v. After
some elaboration, the time average of |ρ12| can be obtained
and given by

|ρ̄12| =
{√

4v2 − c2 ln
(

2v+c
2v−c

)/[
4K

(
c2

c2−4v2

)
c
]
, c < 2v

√
c2 − 4v2 ln c−2v

c+2v

/{
4 Im

[
K

(
c2

c2−4v2

)]
c
}
, c > 2v.

(11)

As shown in Fig. 1(b), the theoretical results of the time-
average coherence |ρ̄12| (11) is confirmed by numerical results
obtained by numerically solving Eq. (4) with Runge-Kutta
algorithm. It is clearly seen that |ρ̄12| attains its maximum
value at the critical point c/v = 2, which corresponds to the
boundary between the Josephson oscillation regime and self-
trapping regime. In Fig. 1(b), we can also see that near the
transition point, there is a divergency between the numerical
and analytical results: it is because the critical behavior is
closely related to the separatrix of the Hamiltonian. Near the
separatrix, the period of the trajectory diverges to infinity as
a function of the relative deviation of the energy from the
separatrix energy.

III. EFFECT OF NOISE ON COHERENCE

Now, we consider the condensate atoms coupled with the
environment. In this work, we consider the effect of two types
of noise on the two-mode dynamics with the master equation
takes the form [41,42]

∂

∂t
ρ = −i[H,ρ] − 2	x[Sx,[Sx,ρ]] − 2	z[Sz,[Sz,ρ]], (12)
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FIG. 3. (Color online) Coherence |ρ12| as a function of time,
starting from the condensate prepared in the left well with (a) c = v,
(b) c = 2v, (c) c = 3v, (d) c = 4v. The decoherence rate is chosen
as 	x = 0.05v.

where ρ is the density matrix of system states, Sx = â
†
RâL+âR â

†
L

2 ,

Sz = â
†
RâR−â

†
LâL

2 , and 	x,z is the decoherence rate. In the
following, we will investigate the coherence between the
two wells, which is given by one element of the reduced
single-particle density matrix |ρ12|.

A. Case of �z = 0

To start with, we consider the case of 	x �= 0 and 	z =
0. This situation may be implemented, e.g., by a stochastic
modulation of the potential barrier between the wells [41,42].
According to Eq. (12), the equations of motion for the reduced
single-particle density matrix are

ρ̇11 = −ρ̇22 = −	x(ρ11 − ρ22) + iv(ρ12 − ρ21)/2, (13)

ρ̇12 = i/2(v − 2cρ12)(ρ11 − ρ22) − 	x(ρ12 − ρ21). (14)

The dynamics of coherence is illustrated in the numer-
ical results of Fig. 3, where we plot the dynamics of the
coherence as a function of time for various interactions with
the condensates initially in the left well and the decoherence
rate 	x = 0.05v. Clearly, the decoherence decreases the
amplitude of oscillations in the |ρ12| first and finally induces
|ρ12| stabilized at a fixed value independent of the time, which
indicates that this kind of the coupling can not lead to the
coherence vanishing. In this figure, we also note that the
final fixed values of |ρ12| are dependent on the interaction
strength c/v, i.e., the different interaction strengths determine
the different final fixed values.

In order to investigate the relation between the final fixed
value of |ρ12| and the interaction strength c/v, in Fig. 4 we
plot the fixed value of |ρ12| as a function of c/v at t = 100.
For simplicity, in the following we denote the final fixed
value of |ρ12| as |ρ12|∞. As shown in Fig. 4, |ρ12|∞ shows
plenty of features. First, one can see that the values of |ρ12|∞
increase with increasing c/v first and then attain maximum
values at some points of c/v. For the small decoherence rate
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FIG. 4. (Color online) Coherence |ρ12|∞ as a function of c/v with
different decoherence rate. The inset shows |ρ12|∞ as a function of
	/v with the interaction strength c/v = 3.5. The horizontal dashed
line is the numerical result of time-average coherence |ρ̄12| with
	x = 0 and c/v = 3.5.

(i.e., 	x = 0.01v, 0.1v), the results of |ρ12|∞ are nearly the
same, and the points which correspond to the maximum values
of the coherence are close to c/v = 2. While for the large
decoherence rate (i.e., 	x = 0.4v, 0.6v), it can be found that
the points corresponding to the maximum values of |ρ12|∞ are
far away from the value of c/v = 2. It means the effect of the
system-environment coupling shifts the transition values. In
Fig. 4 , we can also find that at some values of c/v, |ρ12|∞ for
the large 	x are larger than that for the small 	x . As shown
in the inset of Fig. 4, |ρ12|∞ as a function of 	x is plotted
with interaction strength c/v = 3.5. It can be found that in
some regimes, |ρ12|∞ increases with the coupling strength
increasing. Moreover, we can see that in some regimes, the
values of |ρ12|∞ for 	x > 0 even larger than |ρ̄12| for 	x = 0.
It means that the presence of BEC-environment coupling can
enhance the coherence for some particular interaction strength.

On the other hand, the decoherence may also influence
the dynamics of the population difference between the two
wells. According to Eq. (13 ), the equation of motion for the
population difference is given by

ṡ = −2	x(ρ11 − ρ22) + iv(ρ12 − ρ21). (15)

As shown in Fig. 5, it can be clearly seen that when c/v is
small (c/v < 2), s oscillates nearly symmetrically in the whole
plane. This phenomenon is similar to the case of N -particle
oscillation in which a “damping” oscillation is apparent [52].
While c/v is bigger (c/v > 2), s oscillates in the half plane first
and some time later it equals to zero which indicates that the
decoherence destroys the quantum tunneling or self-trapping
after a few cycles of evolution. It is much different from the
results of the N -particle case without decoherence in which
the population difference s only oscillates in a half plane and
for intermediate times stabilizes at a fixed value [52].
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FIG. 5. (Color online) Time evolution of the population differ-
ence (15) for different interaction strengths (a) c = v, (b) c = 2v,
(c) c = 3v, (d) c = 4v. The initial condition is the condensate in the
left well and the decoherence rate chosen is 	x = 0.05v.

B. Case of �x = 0

Next, we consider the case of 	x = 0: for this kind of
coupling, it may be caused by collisions with thermal atoms.
According to Eq. (12), we get the equations of motion for the
elements of the single-particle density matrix:

ρ̇11 = −ρ̇22 = iv(ρ12 − ρ21)/2, (16)

ρ12 = −2	zρ12 + i(v − 2cρ12)(ρ11 − ρ22)/2. (17)

For such a noise, it is usually interpreted as a collisional
dephasing.

In Fig. 6, we plot the dynamics of |ρ12| with different
interactions by numerically solving Eqs. (16) and (17). It
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FIG. 6. (Color online) Coherence |ρ12| as a function of time with
(a) c = v, (b) c = 2v, (c) c = 3v, (d) c = 5v. The initial condition
is the condensate in the left well and the decoherence rate chosen is
	z = 0.01v.
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FIG. 7. (Color online) Time evolution of the population differ-
ence for different interaction strengths (a) c = v, (b) c = 2v, (c)
c = 3v, (d) c = 5v . The initial condition is the condensate in the left
well and the decoherence rate chosen is 	z = 0.01v.

can be found that the coherence finally vanishes under the
noise. However, we notice that the behaviors of |ρ12| in
the evolutionary process are obviously different for different
interactions. For the weak interaction, as shown in Figs. 6(a)
and 6(b), the noise decreases the amplitude of oscillations
of |ρ12| first and finally spoils the coherence. For strong
interaction, as shown in Figs. 6(c) and 6(d), the amplitude
of oscillations of |ρ12| decreases first and then it oscillates
symmetrically along a fixed value. After some time, the
coherence |ρ12| exhibits a sudden decreasing and then decays
as a function of exponent.

For the above phenomenon, it can be understood from an
analysis on the time evolution of the population difference.
In Fig. 7, we plot the population difference for different
c/v. From this figure, we can see clearly that for a small
c/v [i.e., Figs. 7(a) and 7(b)], the population difference s

oscillates between 1 and −1 with its amplitude decreasing
with the time evolution. For a large c/v, s oscillates in a half
plane [Figs. 7(c) and 7(d) in the positive plane] first, then
it oscillates symmetrically along the value s = 0 with a small
amplitude. According to Eq. (17), we can find that when s = 0,
the equation of motion for ρ12 reduces to

ρ̇12 = −2	zρ12. (18)

Then, we have

|ρ12(t)| = e−2	zt |ρ12(tc)|, (19)

where tc is the time when s = 0. According to Eq. (19), we note
that coherence exhibits an exponential decay which is shown
in Figs. 6(c) and 6(d). From the above result, we know the
coherence has a close relation with the population difference.
It is shown that for the strong interaction, the coherence of
the system will always oscillate symmetrically as long as the
atomic population is nonequilibrium between the two wells;
when the atomic population is balanced between the two wells,
the coherence presents a sudden transition and subjects to an
exponential decay.

IV. CONCLUSION

We have analyzed the dynamics of a Bose-Einstein
condensate in a double-well potential in the frame of the
mean-field approximation. We investigated the dynamics of
the coherence between the two wells and gave an analytical
result of time-average coherence in the absence of the
BEC-environment coupling. We give an analytical result of
the time-average coherence and show that it attains maxi-
mum value at the critical point which corresponds to the
boundary between the Josephson oscillation and self-trapping
regimes.

We also studied the dynamics of coherence under noise.
By numerically solving the master equations with condensate
operators which are characterized by Sx and Sz, we showed
that under the first kind of the coupling Sx , the coherence
finally stabilizes at a fixed value, and found that the pres-
ence of BEC-environment coupling can even enhance the
coherence for some particle interaction strength. We also
showed that the points which correspond to the maximum
value of |ρ12|∞ are far away from c/v = 2, which indicates
the effect of the system-environment coupling shifts the
transition values. When the second kind of coupling Sz

dominates, the noise destroys the coherence. However, for
the strong interaction strength c/v, |ρ12| exhibits a sudden
transition after some time and then subjects to an exponential
decay.
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APPENDIX

Since we consider the atoms are trapped in a symmetric
double well, we have ωL = ωR , and ULL = URR . By setting
the resonant laser excitation � = 0, the Hamiltonian (1)
reduces to

Ĥ = (ωL − ULL/2)(â†
LâL + â

†
RâR) + ULL

2
â
†
LâLâ

†
LâL

+ ULL

2
â
†
RâRâ

†
RâR + v

2
(â†

LâR + â
†
RâL). (A1)

Since the total number of the system N̂ = â
†
LâL + â

†
RâR is

conserved, the first term of the Hamiltonian is a constant
and can be neglected. Adding a constant term −N̂2ULL/4
to Eq. (A1), we get

Ĥ = ULL

2
(â†

LâLâ
†
LâL + â

†
RâRâ

†
RâR)

− ULL

4
(â†

LâL + â
†
RâR)2 + v

2
(â†

LâR + â
†
RâL)

= ULL

4
(â†

RâR − â
†
LâL)2 + v

2
(â†

LâR + â
†
RâL). (A2)
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