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Measure synchronization in a two-species bosonic Josephson junction
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Measure synchronization (MS) in a two-species bosonic Josephson junction (BJJ) is studied based on
semiclassical theory. Six different scenarios for MS, including two in the Josephson oscillation regime (the
zero-phase mode) and four in the self-trapping regime (the π -phase mode), are clearly shown. Systematic
investigations of the common features behind these different scenarios are performed. We show that the average
energies of the two species merge at the MS transition point. The scaling of the power law near the MS transition
is verified and the critical exponent is 1/2 for all of the different scenarios for MS. We also illustrate MS in a
three-dimensional phase space; from this illustration, more detailed information on the dynamical process can be
obtained. In particular, by analyzing the Poincaré sections with changing interspecies interactions, we find that
the two-species BJJ exhibits separatrix crossing behavior at the MS transition point and such behavior depicts
the general mechanism behind the different scenarios for the MS transitions. The new critical behavior found in
a two-species BJJ is expected to be found in real systems of atomic Bose gases.
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I. INTRODUCTION

Coupled dynamical systems can show a magnificent col-
lective behavior called synchronization [1], a concept first
shown experimentally by Huygens with two marine pendulum
clocks in 1665. In recent decades, many nontrivial features
have been revealed [2]. In most such studies, coupled dissipa-
tive oscillators are employed, whereas research on coupled
nondissipative Hamiltonian systems is still at a primitive
stage because of complications originating from Liouville’s
theorem [3–6]. In the latter system, a new kind of collective
phenomenon called measure synchronization (MS) was found.
As demonstrated by Hampton and Zanette [7], two coupled
Hamiltonian systems experience a dynamical phase transition
from a state in which the two Hamiltonian systems visit
different phase-space domains to a state in which the two
Hamiltonian systems cover an identical phase-space domain
as the coupling strength increases. Such phenomena were later
investigated in coupled Duffing-, ϕ4-, and Frenkel-Kontorova-
type Hamiltonian systems [8–10].

Experimentally, the superconducting Josephson junction is
perhaps the most widely studied class in the exploration of
synchronization; the superconducting Josephson junction can
serve as a prime example of coupled dynamical systems. With
recent experimental progress in Bose-Einstein condensates
(BECs), a bosonic Josephson junction (BJJ) can be created
and controlled by confining single-species BECs in a double
well [11]. In a pioneering theoretical study [12], Smerzi et al.
mapped a single-species BJJ to a classical pendulum system.
Therefore, it is natural to expect that a two-species BJJ, which
consists of a two-species BEC, provides a model system to
study coupled dynamical systems.

The single-species BJJ is of great significance in its
own right. The generalized Josephson equations describing
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the BJJ differ from the ones used for the superconducting
Josephson junction by the presence of a nonlinear interaction
term [12]. Because of this term, a single-species BJJ can
exhibit a counterintuitive phenomenon called macroscopic
quantum self-trapping (MQST). In a detailed analysis of this
novel phenomenon [13], the Josephson oscillation (JO) regime
and MQST regime can be seen in a phase-plane portrait.
Additionally, through an increase in the nonlinear interaction
term, the dynamical phase transition from JO to MQST will
occur because of the separatrix crossing behavior in the phase
space [15–18]. This dynamical phase transition behavior has
been studied extensively both theoretically and experimentally
[15–23].

Theoretical analysis has been extended to a two-species
BJJ [24–37]. A system of equations for coupled pendula
can be derived for the temporal evolution of the relative
population and relative phase of each species. Many interesting
tunneling effects have been found, including the symmetry
restoring phase [27], mixed-Rabi-Josephson oscillation [30],
and counterflow superfluidity [29]. We have studied collective
modes in a two-species BJJ [38]. In addition to phase
synchronization, we determined that measure synchronization
can also occur. The transitions between different modes can
be found by varying the interspecies interaction strength.

In this paper, we perform a systematic investigation of the
measure synchronization found in such systems. Six different
scenarios for MS are clearly determined. We identify that MS
is a continuous phase transition, the scaling law for the MS
transitions is numerically verified, and the critical exponent
is 1/2. In particular, separatrix crossing is revealed to be the
dynamical mechanism behind the different scenarios for MS
by Poincaré section analysis. Because experimental progress
has been made in the production of two-species BECs with
tunable intra- and interspecies interactions [39,40], we expect
that a two-species BJJ can be realized and that the MS can thus
be experimentally investigated in the near future.

This paper is organized as follows. A brief description of a
two-species BJJ model is given in Sec. II. In Sec. III, different
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scenarios of MS are introduced. Section IV presents a detailed
analysis of different MS scenarios. A summary is given in
Sec. V.

II. MODEL

A two-species BJJ can be experimentally realized by
trapping a binary mixture of BECs in a symmetric double-well
potential. By assuming that the interaction among the atoms
is sufficiently weak, with the well-known two-mode approx-
imation [12–14], the Hamiltonian in the second quantization
reads

Ĥ = ua

2Na

[(â†
LâL)2 + (â†

RâR)2] + ub

2Nb

[(b̂†Lb̂L)2 + (b̂†Rb̂R)2]

− va

2
(â†

LâR + â
†
RâL) − vb

2
(b̂†Lb̂R + b̂

†
Rb̂L)

+ uab√
NaNb

(â†
LâLb̂

†
Lb̂L + â

†
RâRb̂

†
Rb̂R), (1)

where â
†
L (R) (âL (R)) and b̂

†
L (R)(b̂L (R)) are the creation (an-

nihilation) operators for the localized modes in the left L

or right R well of different species a or b, respectively.
Here Na and Nb stand for the particle numbers of species a

and b. In addition, uσ = (4πh̄aσ Nσ/mσ )
∫ |ϕσ |4dr and uab =

2πh̄aab

√
NaNb( 1

ma
+ 1

mb
)
∫ |ϕa|2|ϕb|2dr denote the effective

interaction of atomic collision between the same kind of
species and between different species, respectively, with σ =
a,b indicating the species. The interactions can be either repul-
sive or attractive, depending on the sign of u. As demonstrated
by experiments in a mixture of 87Rb and 85Rb [39], ua , ub,
and uab can be tuned by the Feshbach technique. The effective
Rabi frequency vσ = ∫

[(h̄2/2mσ )∇ϕL∇ϕR + V (r)ϕLϕR]dr

describes the coupling between two wells.
Under the semiclassical limit [12–14], the dynamics

of the system can be described by a classical Hamilto-
nian H = 〈�GP |Ĥ |�GP 〉/N , in which |�GP 〉 = 1√

Na
(αLâ

†
L +

αRâ
†
R)Na |0,0〉 ⊗ 1√

Nb
(βLb̂

†
L + βRb̂

†
R)Nb |0,0〉 is the collective

state of the N -particle system with N = Na + Nb. Here
αj = |αj |eiθaj and βj = |βj |eiθbj (j = L or R) are four c

numbers that correspond to the probability amplitudes of
the two different species of atoms in the two wells. The
conservation of particle numbers of each species requires
|αL|2 + |αR|2 = 1 and |βL|2 + |βR|2 = 1.

By introducing the relative population difference Sa =
(|αL|2 − |αR|2) and Sb = (|βL|2 − |βR|2) and the relative
phases difference θσ = θσL − θσR . We obtain the mean-field
Hamiltonian [24]

Htot = Ha + Hb + HI , (2)

which is composed of the Hamiltonian Hσ (σ = a,b),

Hσ = −uσ

2
S2

σ + vσ

√
1 − S2

σ cos θσ , (3)

and the coupling term

HI = −uabSaSb. (4)

The mean field Hamiltonian for a single-species BJJ [12,13]
Hσ is well known; HI is the coupling term. Thus a two-species
BJJ is similar to two coupled single-species BJJs. It is clear that

the coupling occurs because of the presence of the interspecies
interaction uab.

The equations of motion can be derived by computing θ̇σ =
∂H
∂Sσ

and Ṡσ = − ∂H
∂θσ

; we obtain

θ̇a = −uaSa − vaSa√
1 − S2

a

cos θa − uabSb, (5)

Ṡa = va

√
1 − S2

a sin θa, (6)

θ̇b = −ubSb − vbSb√
1 − S2

b

cos θb − uabSa, (7)

Ṡb = vb

√
1 − S2

b sin θb. (8)

The tunneling dynamics of a two-species BJJ can be described
by Eqs. (5)–(8). Here the standard fourth-order Runge-Kutta
method is used to obtain a numerical solution. Because we
are interested in showing the effects of coupling on the
dynamics of each species, the collective motion is presented
by projecting the state of the full system onto the individual
phase spaces, i.e., we study the trajectories Sa(t) and θa(t) in
the phase plane (Sa,θa) and the trajectories Sb(t) and θb(t) in
the phase plane (Sb,θb).

The tunneling dynamics for a single-species BJJ have
been extensively studied [12–14,18–23] and studies of Hσ

based on the semiclassical theory have shown that there are
two distinct dynamic regimes in phase space [12,13,23]: the
Josephson oscillation regime and the self-trapping regime
with a strong nonlinearity (u/v > 1). For simplicity, the zero
phase will be used to stand for the Josephson oscillation, in
which θσ oscillates around θσ = 0; the π phase stands for the
self-trapping, in which θσ oscillates around θσ = π . To show
the coupled dynamical behavior of Hσ , we will then categorize
the initial configurations of a two-species BJJ into two broad
categories: (i) the zero-phase mode and (ii) the π -phase mode.

III. MEASURE SYNCHRONIZATION IN THE ZERO-
AND π -PHASE MODES

A. The zero-phase mode

First, we present measure synchronization in the zero-phase
mode, that is, the mode in which θσ oscillates around θσ = 0.
The initial conditions (Sa,θa,Sb,θb) are (0.2,0.0,0.4,0.0), ua =
ub = 1.2, and va = vb = 1.

1. With repulsive interactions (uab > 0)

Figures 1(a)–1(c) show the evolution process for MS with
repulsive interspecies interactions (uab > 0). By increasing the
coupling strength uab, we draw orbits on the (Sσ ,θσ ) (σ = a,b)
phase plane of the two subsystems. For uab = 0, as shown in
Fig. 1(a), these initial conditions correspond to two different
quasiperiodic orbits, which cover closed curves in green and
black. For uab > 0, the two closed curves are replaced with two
smooth quasiperiodic trajectories wandering in two distinctive
phase-space domains, which are ring shaped. As uab increases,
the two phase-space domains first evolve such that the external
border of the inner domain approaches the internal border
of the outer domain and the two approach each other until
uab = 0.0086, at which point the two approaching boundaries
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FIG. 1. (Color online) Phase-space domains of the two species in
the zero-phase mode. The two species are represented by green and
black. The initial configuration (Sa,Sb,θa,θb) is set to be (0.2,0.4,0,0).
MS for repulsive uab: (a) uab = 0, (b) uab = 0.0086, and (c)
uab = 0.009. MS for attractive uab: (d) uab = 0, (e) uab = −0.01,
(f) uab = −0.0325, (g) uab = −0.0625, (h) uab = −0.0738, and (i)
uab = −0.08.

are almost in contact [Fig. 1(b)]. Then a sudden change occurs
as uab increases further, as shown in Fig. 1(c). The two
formally well-separated phase-space domains merge and cover
the phase-space domains with identical invariant measure
[7]. This dynamical phase transition of the two phase-space
domains marks the transition to measure synchronization. The
evolution process described above is identical to that described
previously [7–9], which we will call typical MS hereafter.

2. With attractive interactions (uab < 0)

Figures 1(d)–1(i) show the evolution process with increas-
ing strength of attractive interspecies interactions. As a starting
point, in Fig. 1(d) we plot the orbits for each species at zero
coupling. For uab < 0, as uab decreases, we see that this
evolution process is quite different from the typical MS. The
two phase-space domains first evolve in the opposite direction;
the internal border of the inner ring approaches the center
of the phase-space domain, whereas the external border of
the outer ring expands [Fig. 1(e)]. For uab = −0.0325, the
internal border of the inner ring finally reaches the center of
the phase space [Fig. 1(f)]. Then, as uab decreases, these two
rings gradually thin until uab = −0.0625; at this point, the two
rings again become two curves [Fig. 1(g)], which appear to be
similar to uab = 0 [Fig. 1(d)]. Additionally, as uab continues
to decrease [Figs. 1(g)–1(i)], the evolution process becomes
identical to that for the typical MS process [as described in
Figs. 1(a)–1(c)].

B. Localized π -phase mode

Here we present measure synchronization in the π -phase
mode, in which θσ oscillates around θσ = π . The initial
conditions (Sa,θa,Sb,θb) are (0.2,π,0.4,π ), ua = ub = 1.2,
and va = vb = 1.

FIG. 2. (Color online) Phase-space domains of the two species
in the localized π -phase mode. The two species are represented
by green and black. The initial configuration (Sa,Sb,θa,θb) is
set to be (0.2,0.4,π,π ). MS for repulsive uab, (a) uab = 0,
(b) uab = 0.03, (c) uab = 0.0737, (d) uab = 0.1498, (e) uab = 0.1621,
and (f) uab = 0.1622, and attractive uab, (g) uab = 0, (h) uab =
−0.01, and (i) uab = −0.0123.

1. With repulsive interaction (uab > 0)

Figures 2(a)–2(f) show the evolution process for MS with
repulsive interspecies interactions (uab > 0). For uab = 0, as
shown in Fig. 2(a), these initial conditions correspond to two
different quasiperiodic orbits, which cover closed curves in
green and black, and the two curves have an inverted-triangle
shape. By increasing the coupling strength, we can see that
the two inverted triangles broaden in such a way that the two
embedded phase-space domains evolve in opposite directions
[Fig. 2(b)] and the internal border of the original inner
inverted triangle approaches the center of the phase space.
At uab = 0.0737, the inner phase-space domain reaches the
center [Fig. 2(c)]. Subsequently, the two phase-space domains
approach one another until they make contact before the MS
transition at uab = 0.1621; in this evolution process, there is
also be a moment at which the phase-space domains become
closed curves again [Fig. 2(d)]. This scenario is similar to the
scenario for attractive interactions in the zero-phase mode.
The most obvious difference is that the phase-space domains
no longer have conserved boundaries: As the coupling strength
increases, the area expands.

2. With attractive interaction (uab < 0)

Figures 2(g)–2(i) show the scenario with increasing
strength of attractive interspecies interactions. This scenario
is very similar to the scenario for typical MS. We find that as
the coupling strength increases, the two phase-space domains
approach each other until MS occurs at uc = −0.0123.

C. Nonlocalized π -phase mode

In the π -phase mode, a new type of coherent evolution
process is found, as shown in Fig. 3, for the initial conditions
(Sa,θa,Sb,θb) of (0.2,π,−0.4,π ). At uab = 0, compared with
the localized π -phase mode, these initial conditions also
correspond to two closed curves, but with one curve on top
of the other [Fig. 3(a)].
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FIG. 3. (Color online) Phase-space domains of the two species
in the nonlocalized π -phase mode. The two species are represented
by green and black. The initial conditions (Sa,θa,Sb,θb) are taken
to be (0.2,π,−0.4,π ) in the π -phase mode. Nonlocal MS for
repulsive uab, (a) uab = 0, (b) uab = 0.01, and (c) uab = 0.0123,
and attractive uab, (d) uab = 0, (e) uab = −0.03, (f) uab = −0.0737,
(g) uab = −0.1498, (h) uab = −0.1621, and (i) uab = −0.1622.

As the strength of repulsive interspecies interactions in-
crease, the phase-space domains of the two species become
more comparable in area until uab reaches a critical value
(uab = 0.0123) [Fig. 3(b)]; then, a sudden change occurs, as
shown in Fig. 3(c), and the two phase-space domains have the
same area. However, in contrast to Fig. 2(i), the phase-space

domain of each species lies symmetrically on both sides of the
line S = 0 [Fig. 3(c)].

As the strength of attractive interspecies interactions in-
creases, we find another scenario for the transition behavior
that ends in a similar state [Fig. 3(i)]. Interestingly, we note that
this scenario has many features in common with the scenario
shown in Figs. 2(a)–2(g). One major difference is the structure
of the phase-space domains: One structure goes from top to
bottom, whereas the other structure is embedded.

Comparing Figs. 2 and 3, we can see that each phase dia-
gram corresponds to uab values with the same magnitude but
with opposite sign. This result can be understood by analyzing
Eqs. (2)–(4). If we set sa and sb to have opposite signs and
let uab also have a value with opposite sign, the coupling
term HI does not change and neither Ha or Hb changes. The
two different initial conditions with opposite signs for the
interspecies interactions correspond to the same Hamiltonian
and consequently have the same dynamic evolution.

IV. ANALYSIS

Below we will explore the nature of the MS found for a
two-species BJJ in detail.

A. Energy characteristics

For the two groups of MS scenarios that have been found,
the zero- and π -phase modes, we analyze the energy function
for each species Ea,b and observe how the energy function
changes with interspecies interactions. Here

Ea,b = −ua,b

2
S2

a,b + va,b

√
1 − S2

a,b cos θa,b. (9)

In Fig. 4 we plot the energy function for each species
with different interspecies interaction strengths below uc

for the initial configuration in the zero-phase mode and

FIG. 4. (Color online) Evolution of energy functions for the two species for (a)–(c) the zero-phase mode and (d)–(f) the π -phase mode.
Before MS is achieved (uab < uc), the two species have different energy variations; after MS is achieved (uab � uc), the two energy variations
would be the same. The demixing to mixing feature of MS transitions can be clearly seen.
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FIG. 5. (Color online) Average energies of the two species in the
zero- and π -phase modes. The two subsystems would have equal
averaged energy once MS is achieved in (a) the zero-phase mode and
(b) the π -phase mode.

π -phase mode for repulsive interspecies interaction. Before
measure synchronization, Ea and Eb do not overlap at all.
As uab continues to increase, the difference between the
lower boundary of the initially higher-energy species and the
upper boundary of the initially lower-energy species becomes
smaller and smaller. When uab reaches the transition point
uc, Ea,b suddenly has the same range of energy variation.
This evolution process is shown in Figs. 4(a)–4(c) for the
zero-phase mode and in Figs. 4(e)–4(g) for the π -phase mode.
The demixing to mixing feature of the MS transitions can be
clearly seen in these figures.

To describe MS in the context of our physical model,
the average energy of a single-species BJJ is defined
to be

〈Ea,b〉 = 1

T

∫ T

0
Ea,bdt. (10)

In Fig. 5(a) we show the average energy 〈Ea〉 and 〈Eb〉 as
a function of interspecies interactions uab in the zero-phase
mode. It is clear that there are sharp transitions at uab =
uc = 0.0086 and uab = uc = −0.0738 for the repulsive and
attractive interactions, respectively. Below uc (|uab| < |uc|),
there is a finite difference between Ea and Eb, whereas
above uc (|uab| > |uc|), both species have identical average
energies. Figure 5(b) shows the plot for the π -phase mode.
The correspondence of the MS transition with the sudden
merging of the average energies is also clearly shown.
In addition, we find that the average energies change in
the π -phase mode, even in the measure-synchronized state,
whereas in the zero-phase mode, the average energies remain
fixed.

B. Critical behavior

The critical behavior of MS has been studied previously.
In the seminal work in [7], Hampton and Zanette introduced
an order parameter to study the critical logarithmic singu-
larity; however, they did not find the scaling law and the
critical exponent because of the order parameter, which is
an averaged quantity, that was chosen for the calculation.

FIG. 6. Scaling relation of �S ∝ (uab − uc)1/2 for (a) the zero-
phase mode with repulsive interaction and (b) the π -phase mode with
repulsive interaction.

In Ref. [8], through the computation of the interaction
energy and the phase dynamics of the oscillators, the scaling
law behind MS in coupled ϕ4 systems was extensively
discussed and different scaling laws were numerically ver-
ified before and after MS. The critical exponents are 1/3
and 1/2.

Here we studied the critical behavior of MS in a two-species
BJJ. We confirmed that there are scaling laws in this system. As
the two phase-space domains approach each other, we noticed
that the two phase-domain boundaries are getting close to
contact and there is a scaling relation behind this process. By
computing the distance between �S and the two approaching
boundaries on the Sa,b axes, we find the scaling relation
between �S and uab − uc; this relation is �S ∝ (uab − uc)1/2

and the critical exponent is 1/2. Figure 6(a) shows the scaling
relation for the zero-phase mode with repulsive interactions
and Fig. 6(b) shows the scaling relation for the π -phase
mode with repulsive interactions. For the other scenarios, we
have verified that the critical exponents are all identical and
are 1/2.

C. Three-dimensional description

Previous work on MS only studied the two-dimensional
projected phase-space domains of the coupled-Hamiltonian
system. However, this projection could not be a complete
description of the dynamical behavior because the dynamics
of the two-coupled Hamiltonian actually take place in a
four-dimensional phase space (Sa,θa,Sb,θb). In the absence
of dissipation, energy constrains the motion of the system
to a three-dimensional energy hypersurface of the four-
dimensional phase space. To gain the most insight into MS,
we can use a three-dimensional description of MS.

By taking the initial configuration in the zero-phase mode
as an example, we provide a three-dimensional description
of measure synchronization in Fig. 7. First, we choose two
different sets of coordinate axes: (Sσ ,θσ ,Sσ̄ ) and (Sσ̄ ,θσ̄ ,Sσ )
with σ = a,b. The corresponding initial conditions and the
coupling uab are identical to those in Fig. 1.
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FIG. 7. (Color online) Three-dimensional view of MS for a two-
species BJJ in the zero-phase mode. Two different colors represent
two different choices of the three-dimensional axes: The green one is
drawn on axes (Sa,θa,θb) and the red one is drawn on axes (Sb,θb,θa).
(c) and (i) show measure synchronized states.

With repulsive interspecies interactions (uab > 0), the
evolution process of the three-dimensional phase space is
shown in Figs. 7(a)–7(c); these figures show side views
of the two manifolds in the three-dimensional phase-space
representation and top views corresponding to the figures
shown in Figs. 1(a)–1(c). In Fig. 7(a), for uab = 0, there are two
well-separated manifolds, with one manifold around the other.
For uab = 0.0086, as shown in Fig. 7(b), the two manifolds
are close to each other but are still separated from one
another. However, with uab > 0.0086, as shown in Fig. 7(c)
(uab = 0.009), we see that the two manifolds completely
overlap; this overlap indicates the measure-synchronized states
in the three-dimensional phase-space representation.

With attractive interspecies interactions (uab < 0), the evo-
lution process of the three-dimensional phase space is shown
in Figs. 7(d)–7(i). The process shown in Figs. 7(d)–7(i) is not
as direct as in case of the repulsive interspecies interactions
because initially the inner phase-space volume shrinks in size
[Figs. 7(d)–7(g)]; then this volume expands continuously until
it achieves the measure-synchronized states [Fig. 1(i)]. There
we can see some behaviors that are not apparent on the two-
dimensional map; for example, although Figs. 1(g) and 1(d)
appear to be exactly identical, they are actually very different,
as shown in the three-dimensional representation: Fig. 7(d)
shows quasiperiodic states, whereas Fig. 7(g) shows periodic
states. The volume of the synchronized state also apparently
changed; however, in the two-dimensional projection, we
cannot see many of these changes.

To summarize, a three-dimensional view of MS is given. It
is observed that as MS is attained, the two energy manifolds
in the phase space (Sσ ,θσ ,Sσ̄ ) completely overlap. This result

provides a more intuitive picture of MS compare with the
two-dimensional projection and some features that we do not
see in the two-dimensional phase space are presented. These
features include the difference between the quasiperiodic state
and periodic state [Figs. 1(d) and 1(g)] and the changing
volume of the manifolds as uab increases can be seen clearly.
These results help us understand the measure invariance of the
two-dimensional phase-space domains after MS is achieved
because the phase-space domains can be seen to be the
projection of the two energy manifolds on a two-dimensional
phase plane.

D. Poincaré section analysis

Measure synchronization is a dynamical phase transition
phenomenon in coupled Hamiltonian systems, so naturally,
we ask how this phenomenon occurs. We find that the answer
can be revealed through the analysis of the Poincaré maps of
the system.

The procedure for our analysis can be demonstrated for the
example of the repulsive interactions in the zero-phase mode
[Fig. 8(a)]. First, we solve the canonical equations (5)–(8);
then we take the section slice of (Sa,θa) at each time for which
θb = 0.0 and θ̇b > 0; the section slice taken in this procedure
is marked with black dots. Simultaneously, we also take the
section slice of (Sb,θb) at each time for which θa = 0.0 and
θ̇a > 0; this type of section slice is marked with green dots.
In Fig. 8(a), different curves with the same color are drawn
for different values of uab that we chose. For the black dotted
curves, with uab = 0.001, the corresponding Poincaré section
is the innermost, closed, ring-shaped curve. As the coupling
intensity increases, this ring-shaped curve expands until uab

reaches uc (uc = 0.008 621); at uc, the section slice corre-
sponds to the separatrix, which is marked with red dots. For
uab > uc, the section slice is shaped like a crescent moon and
shrinks in size as uab increases further. The green dotted curves
are drawn for the same chosen set of uab values; the outermost
curve corresponds to the Poincaré section for uab = 0.001.
Conversely, we observe that this ring-shaped Poincaré section
shrinks in size before uab reaches uc and at uc, the separatrix
is also shown; beyond uc, the ring-shaped curve also assumes
a crescent moon shape and shrinks in size as uab increases
further. We note that the separatrix marks the transition from
the localized to the shared phase space. After the measure
synchronization of the two coupled Hamiltonian systems for
uab > uc, the green dotted and black dotted trajectories with
the same coupling intensities merge completely.

Similarly, we perform Poincaré section analysis for the
other scenarios. Figure 8(b) shows the result for the zero-phase
mode with attractive interspecies interactions and Figs. 8(c)
and 8(d) show the results of Poincaré section analysis for
the π -phase mode with attractive interspecies interactions
and repulsive interspecies interactions, respectively. We can
see that in all cases separatrices mark the onset of measure
synchronization.

In summary, through Poincaré section analysis, we have
shown that a two-species BJJ exhibits separatrix crossing
behavior at the critical interspecies interaction of the MS
transition. Therefore, we identified the separatrix crossing to
be the underlying dynamical mechanism of MS.
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FIG. 8. (Color online) Poincaré section analysis for different scenarios of MS shown in Figs. 1 and 2. The red curves with X-point geometry
mark the MS transitions, which correspond to separatrices.

V. CONCLUSION

Measure synchronization in a two-species BJJ has been
systematically studied. Six different scenarios of MS, includ-
ing two in the zero-phase mode and four in the localized
and nonlocalized π -phase modes, have been characterized
and some common features behind have been revealed. We
have found that the MS transition corresponds to the sudden
merger of average energies of the two species. The power law
scaling behind the MS transition has been verified, which is
the same for the different scenarios, and the critical exponent
is 1/2. Furthermore, we have given a three-dimensional view
of MS that provides a more intuitive picture of MS. Some
features that we will not see in the two-dimensional phase
space are revealed. In particular, by using the Poincaré section

analysis, it has been clearly shown that a two-species BJJ
exhibits separatrix crossing behavior at uc. We conclude
that separatrix crossing is the general mechanism behind
the different scenarios of MS transitions found in the two-
species BJJ.
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[21] B. Juliá-Dı́az, D. Dagnino, M. Lewenstein, J. Martorell, and

A. Polls, Phys. Rev. A 81, 023615 (2010).
[22] S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, Nature

(London) 449, 579 (2007); Y. Shin, G. B. Jo, M. Saba, T. A.
Pasquini, W. Ketterle, and D. E. Pritchard, Phys. Rev. Lett.
95, 170402 (2005); L. J. LeBlanc, A. B. Bardon, J. McKeever,
M. H. T. Extavour, D. Jervis, J. H. Thywissen, F. Piazza, and
A. Smerzi, ibid. 106, 025302 (2011).

[23] L. Fu and J. Liu, Phys. Rev. A 74, 063614 (2006).
[24] S. Ashhab and C. Lobo, Phys. Rev. A 66, 013609 (2002).

[25] X. Q. Xu, L. H. Lu, and Y. Q. Li, Phys. Rev. A 78, 043609
(2008).

[26] H. T. Ng and P. T. Leung, Phys. Rev. A 71, 013601 (2005).
[27] I. I. Satija, R. Balakrishnan, P. Naudus, J. Heward, M. Edwards,

and C. W. Clark, Phys. Rev. A 79, 033616 (2009).
[28] G. Mazzarella, M. Moratti, L. Salasnich, M. Salerno, and

F. Toigo, J. Phys. B 42, 125301 (2009).
[29] G. Mazzarella, M. Moratti, L. Salasnich, and F. Toigo, J. Phys.

B 43, 065303 (2010).
[30] G. Mazzarella, B. Malomed, L. Salasnich, M. Salerno, and

F. Toigo, J. Phys. B 44, 035301 (2011).
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