
PHYSICAL REVIEW A 88, 012106 (2013)

Electron-positron pair creation and correlation between momentum and energy level
in a symmetric potential well
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The momentum spectrum of multiphoton-created electrons in the presence of a a static potential well as well
as an alternating field is found to be related to the electron energy levels in the potential well and the energy of
the photons. A simple relation among three energies, the created electron energy associated with the momentum
distribution, the level energy of the electron bound state, and the photon energy, is obtained. Pair production can
be significantly enhanced by this two-field configuration. In this case, the depth of the static potential well and
the frequency of the alternating field also need not be supercritical.
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I. INTRODUCTION

Since Sauter [1] and Schwinger [2] considered pair creation
in a static electric field, vacuum electron-positron production
has been studied theoretically by many authors [3–12]. In par-
ticular, using computational quantum field theory methods one
can numerically solve the Dirac equation directly and investi-
gate pair creation in much detail. There have also been several
experiments on pair creation, for example, experiments at the
Stanford Linac Acceleration Center (SLAC) [13] have shown
that pair creation can occur in laser–electron-beam collisions.
Two mechanisms are mainly responsible for pair creation in
external fields. One is the Schwinger mechanism [2], which
is due to a quantum tunneling effect and requires high fields
E � Ec = 1.32 × 1016 V/cm. The other is due to a transition,
where a high-frequency external field excites electrons with
negative energy states in the Dirac sea to positive energy states,
so that the photon energy plays a key role [5,14–17].

Recently, with the static Sauter potential [18] and a
two-field configuration [9], new results on pair creation
have been found. However, efficient pair creation with the
Sauter potential requires overcritical fields that are not easy
to realize. Therefore, reducing the high-field requirement
becomes crucial. Motivated by this, in this paper we examine
the pair creation in a symmetric potential well taking both the
static Sauter potential and the alternating field into account. It
is found that the width of the potential well and the frequency
of the alternating field play important roles in the pair-creation
process. A scaling law between the momentum spectrum of
created electrons and their energy levels in the potential well
is presented.

The paper is organized as follows. In Sec. II we present and
discuss the relevant numerical solution of the Dirac equation.
In Sec. III we obtain the relation between the momentum
spectrum of the created electrons and their energy levels in
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the potential well. In Sec. IV we consider the evolution of the
number of particles created in the potential well under different
conditions, including that of an asymmetric field. Finally, in
Sec. V a summary and outline of future work are given.

II. THEORETICAL APPROACH

The evolution of the field ψ̂(z,t) is given by the Dirac
equation [19]

i
∂ψ̂(z,t)

∂t
= [cαzP̂ + βc2 + V (z,t)]ψ̂(z,t), (1)

where V (z,t) is the scalar external potential, αz is the z

component of the Dirac matrix, β is the diagonal Dirac matrix,
and c is the speed of light in vacuum. Here and below the
atomic units h̄ = e = me = 1 are used. We can express ψ̂(z,t)
in terms of the electron creation and annihilation operators as

ψ̂(z,t) =
∑

p

b̂p(t)Wp(z) +
∑

n

d̂n(t)Wn(z)

=
∑

p

b̂pWp(z,t) +
∑

n

d̂nWn(z,t), (2)

where
∑

p(n) denotes summation (integration) over all states
with positive (negative) energy, and Wp(n)(z,t) = 〈z|p(n)(t)〉
is the solution of the Dirac equation for the initial condition
Wp(n)(z,t = 0) = Wp(n)(z), where Wp(n)(z) is the energy eigen-
function of the field-free Dirac equation. With Eq. (2) we can
express the fermion operators as

b̂p(t) =
∑
p′

b̂p′Upp′ (z,t) +
∑
n′

d̂
†
n′Upn′ (z,t), (3)

d̂†
n(t) =

∑
p′

b̂p′Unp′ (z,t) +
∑
n′

d̂
†
n′Unn′ (z,t), (4)

b̂+
p (t) =

∑
p′

b̂
†
p′U

∗
pp′ (z,t) +

∑
n′

d̂n′U ∗
pn′ (z,t), (5)

d̂n(t) =
∑
p′

b̂
†
p′U

∗
np′ (z,t) +

∑
n′

d̂n′U ∗
nn′(z,t), (6)
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where Up(n)p′(n′) = 〈p(n)|p′(n′)(t)〉 can be computed by
first solving the Dirac wave equation starting from force-
free eigenstates |p′(n′)〉, and then projecting to all states
|p(n)〉. The density of the created electrons is ρe =
〈vac|ψ̂ (+)†(r,t)ψ̂ (+)(r,t)|vac〉, where the ψ̂ (+) is the positive-
frequency part of the field operator, from which we can get the
number N (t) = ∫

dzρe of created electrons. Accordingly, we
have

ρe =
∑

n

∣∣∣∣∣
∑

p

Upn(t)Wp(z)

∣∣∣∣∣
2

, (7)

and

N (t) =
∑

p

〈vac|b†p(t)bp(t)|vac〉 =
∑

p

∑
n

|Upn(t)|2. (8)

We then get the momentum spectrum of the created electrons

ρp =
∑

n

|Upn(t)|2. (9)

We can obtain the evolution of the states by using a split-
operator technique [8,20], where the time T is discretized
with Nt points and the space is limited in length L with Nz

grid points. The evolution operator in each time step can be
written as

U (t + �t,t) = T̂ exp

(
−i

∫ t+�t

t

[h0 + V (z,t)]dt

)

= exp{−i[h0 + V (z,t + �t/2)]�t} + O(�t3)

= exp(−iV �t/2) exp(−ih0�t) exp(−iV �t/2)

+ O(�t3), (10)

where h0 is the force-free Hamiltonian. Using fast Fourier
transformation, we obtain the matrix elements Upn(t). The
error in each step is of order O(�t3) [8].

III. MOMENTUM SPECTRUM OF THE
CREATED ELECTRONS

In our model, we have a symmetric potential well
V1 and an alternating field V2, so that the total field is
V (z,t) = V1S(z)f (t) + V2 sin(ωt)S(z)θ (t ; t0,t0 + t1), where
S(z) = {tanh[(z − D/2)/W ] − tanh[(z + D/2)/W ]/2}, D is
the width of the potential well, and W is a measure for the
field extension at each edge. The function f (t) = sin[πt/

2t0]θ (t ; 0,t0) + θ (t ; t0,t0 + t1) + cos [π (t − t0 − t1)/2t0] θ (t,
t0 + t1,2t0 + t1) describes the turning on and off processes of
the potential well, and θ (t ; t1,t2) is the step function. During
(0,t0) the potential well exists but it is turned off at t = t0 + t1.
The process for potential turning on and off can trigger pair
creation [21]. In order to reduce this effect, a long duration
t0 = 5/c2 is used. As soon as the potential well is well
established, the oscillating field is turned on for the duration
(t0,t0 + t1), where t1 = 20π/c2, i.e., several laser periods.

In Fig. 1 we present the momentum density distribution
of the created electrons after the fields have been turned off.
The depth of the potential well is V1 = 2c2 − 10 000 and its
width is D = 10λe, where λe is the Compton wavelength.
The frequency of the oscillating potential is ω = 2.1c2 and its
amplitude is V2 = 2c2 − 10 000. As expected, the momentum

distribution is symmetrical, or ρ(p) = ρ(−p). The produced
electrons are accelerated by the electric field when they are
created and can absorb “photons” in the potential well, as
shown in Fig. 1(a). We have marked the value of each peak in
Figs. 1(b), 1(c), 1(d), and 1(e), corresponding to the processes
involving different numbers of photons.

In Fig. 1(b) we show the one-photon process. The corre-
sponding energy of the peak number Np can be calculated
from E2 = p2 + c4 and p = 2πNp/L, where L = 2.0 is the
length of the numerical grid. For example, for N = 19 we then
obtain the electron energy E = 1.091c2 � 1.1c2 = ω − c2.
This can be considered as representing that the electron at
bound-state level −c2 has escaped from the Dirac sea by
absorbing a photon. The energy of the peaks for Np = 58, 65,
72, 83, 95, 107, 118, and 127 can be calculated easily in the
same manner, leading to Ep1 = 1.6637c2, Ep2 = 1.7946c2,
Ep3 = 1.9299c2, Ep4 = 2.1496c2, Ep5 = 2.4174c2, Ep6 =
2.6490c2, Ep7 = 2.8841c2, and Ep8 = 3.0785c2, respec-
tively. On the other hand, the energy levels of the bound
states in the well can be calculated from cp2 cot(p2D) =
EV1/cp1 − cp1 [22] where p2 =

√
(E + V1)2/c2 − c2 and

p1 =
√

c2 − E2/c2. We can then obtain the correspond-
ing energy levels E1 = −0.4247c2, E2 = −0.3069c2, E3 =
−0.1361c2, E4 = 0.0680c2, E5 = 0.2919c2, E6 = 0.5260c2,
E7 = 0.7618c2, and E8 = 0.9778c2. From these results we
can easily deduce the relation Epi = Ei + ω for i = 1 to 8.

The energies corresponding to the peaks with Np = 9,
33, 39, and 47 are ENp=9 = 1.25c2, ENp=33 = 1.2539c2,
ENp=39 = 1.3414c2, and ENp=47 = 1.4700c2, respectively.
They have a somewhat more complex relation [23]. Let us turn
to consider the peak Np = 47. If we use the relation ENp=47 =
E0 + ω, we can find the corresponding peak Np = 150 in
Fig. 1(c) with ENp=150 = E0 + 2ω and Np = 242 in Fig. 1(d)
with ENp=242 = E0 + 3ω, so that E0 should be −0.64c2.
Instead, we find E0 ≈ E1 + E2 + E4. We believe that these
peaks may come from the high-order effects in the interaction
between the energy levels and the photons [23]. Similar results
are obtained for the peaks in Fig. 1(f) at Np = 51,166,267,
which we shall discuss later.

In Figs. 1(c), 1(d), and 1(e) we can also see the two-photon,
three-photon, and four-photon processes, which are associated
with several photons being absorbed by the created electrons.
We have Epn = En + mω, where n = 1,2,3,4,5,6,7,8 and
m = 2,3,4 for each process. It is also found that the probability
of the process involving n + 1 photons is about one or two
orders of magnitude lower than that of the n-photon process.
This is consistent with the perturbation picture [9,15,24].

Figure 1(f) is for the same parameters as above, except
that the length of the numerical grid is now L = 2.2 and it
shows the positive momentum of the created electrons. As
expected, the overall picture is similar to that in Fig. 1(a).
However, the Np values for all the peaks are 1.1 times those
in Fig. 1. As an illustration, we present in the inset the
values Npf

= 1.1Npa
of the peaks corresponding to the two-

photon process. From Figs. 1(a) and 1(f) we can see that the
momentum spectrum of the created electrons does not depend
on the numerical grid size.

In order ascertain that the obtained relation is independent
of the system parameters, in Fig. 2 we present the numerical
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FIG. 1. Momentum spectrum of the pair-created electrons for symmetric combined fields. The frequency of the oscillating field is ω = 2.1c2.
Other parameters are Nz = 4096, t0 = 5/c2, t1 = 20π/c2, T = 2t0 + t1 = (10 + 20π )/c2, Nt = 30 000, D = 10λe, W = 0.3λe and V1 = V2 =
2c2 − 10 000. Except for (f) where the length of the numerical grid is L = 2.2, the other figures have the same numerical grid with L = 2.0.

results for V1 = 1.8c2, V2 = 2c2 − 10 000, D = 8.0λe, ω =
1.8c2, and L = 1.8. Except for the peak Np = 21 [23], we
find the same relation between the energy levels and the peaks
of the momentum spectrum. For simplicity, we concentrate
only on the two-photon process. We find the momentum peaks
at Npi = 105, 112, 123, 135, 147, 160, and 170 for i = 1 to
7, respectively, corresponding to Epi = 2.8554c2, 3.0231c2,
3.2888c2, 3.5812c2, 3.8757c2, 4.1965c2, and 4.4443c2, re-
spectively. On the other hand, the corresponding energy levels
in the well are Ei = −0.7320c2, −0.5550c2, −0.3129c2,

−0.0358c2, 0.2591c2, 0.5598c2, and 0.8516c2, respectively.
That is, for i = 1 to 7 the simple scaling Epi = Ei + 2ω

applies again.
The electrons produced can also occupy the bound states

in the well [25] and they can absorb one or more photons
from the alternating field and then escape from the well. This
multiphoton pair-creation phenomenon shows strongly the re-
lationship between the momentum of the created electrons and
the eigenenergy of the bound states. This multiphoton process
also allows pair production even when the fields are subcritical.
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FIG. 2. Momentum spectrum of the electrons for symmetric
combined fields with ω = 1.8c2, L = 1.8, D = 8λe, and V1 = 1.8c2.
Other parameters are the same as in Fig. 1.

IV. EVOLUTION OF THE ELECTRON NUMBER

In this section we consider the evolution of the number of
the paired electrons for different regimes. The basic parameters
are D = 10λe, W = 0.5λe, and L = 2.0.

A. N(t) at creation

Here we shall assume V1 = V2 = 2c2 − 10 000 and ω =
1.5c2 and 2.1c2. In Fig. 3 we present the total pair-creation
electron number N (t). The curve e in the inset corresponds
to pair creation in the static potential well, i.e., V2 = 0. Even
though the amplitude is subcritical, we see that there are still
some electrons created (because of the turning on process). The

FIG. 3. (Color online) The total number N (t) of the created
electrons for different potentials in the cases of a, symmetric
potential with ω = 2.1c2; b, asymmetric potential with ω = 2.1c2;
c symmetric potential with ω = 1.5c2; and d, asymmetric potential
with ω = 1.5c2. The amplitude of the static and oscillating fields is
V1 = V2 = 2c2 − 10 000 except for the cases of e, symmetric, and f,
asymmetric static field only, i.e., V2 = 0. The other parameters are
the same as in Fig. 1 except for W = 0.5λe.

curve a is for the combined field with a overcritical frequency
ω = 2.1c2. We note that for the subcritical frequency ω =
1.5c2, pair creation can also be triggered, as indicated by the
curve c.

In Fig. 3 we also show N (t) for the asymmetric potential.
The curve f is for pair creation induced by the asymmetric
potential without the alternating field, and the curves b and d
are for the two-field configuration, for ω = 2.1c2 and 1.5c2,
respectively. The following can be noted. First, comparing to
the two-field configuration, we see that the number of electrons
created in the static-potential-alone case is negligible. The
evolution of N (t) exhibits oscillations at the frequency of the
applied alternating field. Second, at short times the electron
number in the symmetric-potential case is about twice that in
the asymmetric case, which can be attributed to the two edges
of the potential well. As time increases, the rate of electron
creation in the symmetric potential well becomes smaller,
but that in the asymmetric potential remains unchanged.
This can be attributed to the suppression effect from Pauli
exclusion and e+e− annihilation. Third, comparing the curve
b with curve c, we see that even with a lower-frequency
(ω = 1.5c2) alternating field, the symmetric potential well can
create more electrons than the asymmetric potential with a
higher-frequency (ω = 2.1c2) field. This can be attributed to
the multiphoton process. If the frequency of the alternating
field satisfies ω = Elevel − (−c2), where Elevel is the energy of
a discrete level in the potential well, pair creation can occur
through quantum transitions. Thus, even when the energy of
the level is low, pair creation can be realized in a combined
alternating field and a static potential well.

The inset 2 in Fig. 3 shows the pair-creation process when
the potential is being turned on. It is surprising that in the initial
stage the symmetric and asymmetric potentials produce nearly
the same number of electrons. Moreover, the particle number
exhibits oscillations at a period of about Tp � 0.7/c2. This
zeptosecond phenomenon may be associated with annihilation
of the created pairs during the turning on of the external
potential [26].

B. The yield N(t) in the overcritical potential well

In this section we consider pair creation in an overcritical
potential well with a subcritical oscillating field. We set V1 =
2c2 + 10 000, V2 = 2c2 − 10 000, and ω = 1.5c2. We shall
again use the function f (t) for the potential turn on and off.

In Fig. 4, the curve g describes pair creation in the static
potential well. The potential well is so deep that the energy
of some bound states in the well become less than −c2

and they dive into the Dirac sea. As discussed in Ref. [25],
the pair production rate becomes suppressed after a certain
characteristic time. This suppression is associated with the
complete occupation of the electron bound states with energy
less than −c2. However, once we add an oscillating field to
the static potential well, the situation changes and the pair
production process is reopened, as the curve h in Fig. 4 shows.
Even the frequency of the oscillating field is not high enough
for direct pair creation; the created electrons in the negative
bound states of the potential well can absorb photons to transit
to the positive states and absorb photons again to jump out of
the potential well, as discussed in Sec. III.
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FIG. 4. (Color online) The total number of electrons created in the
symmetric potential well for the cases of g, V1 = 2c2 + 10 000, V2 =
0, and h, V1 = 2c2 + 10 000, V2 = 2c2 − 10 000. The frequency is
ω = 1.5c2. The other parameters are the same as in Fig. 1.

V. SUMMARY

We have investigated the momentum spectrum of the pair-
created electrons and obtained a simple scaling law for it: Ee =
Elevel + nω. The process can be understood by noting that

electrons can stay or partly stay in the bound states when they
are created. They can then escape from the well by absorbing
one or more photons. One can expect that this effect also exists
for potential wells with more complicated structures.

We have also discussed pair creation triggered by a
combination of a subcritical potential well and an alternating
field. Comparing our results from the symmetric potential
well to those from the asymmetric one [9], we found that
the frequency of the alternating field required for pair creation
can be reduced. For long times, the growth of N (t) in the
symmetric potential well becomes slower, but it remains stable
in the asymmetric potential. However, when an oscillating field
is added to symmetrical potential, the number of created pairs
always increase due to multiphoton transitions.
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