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Quantum phase transition in a three-level atom-molecule system
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We adopt a three-level bosonic model to investigate the quantum phase transition in an ultracold atom-molecule
conversion system which includes one atomic mode and two molecular modes. Through thoroughly exploring the
properties of energy-level structure, fidelity, and adiabatic geometric phase, we confirm that the system exhibits
a second-order phase transition from an atom-molecule mixture phase to a pure molecule phase. We give the
explicit expression of the critical point and obtain two scaling laws to characterize this transition. In particular,
we find that both the critical exponents and the behavior of the ground-state geometric phase have obviously
changed in contrast to a similar two-level model. Our analytical calculations show that the ground-state geometric
phase jumps from zero to π/3 at the critical point. This discontinuous behavior has been checked by numerical
simulations and it can be used to identify the phase transition in the system.
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I. INTRODUCTION

Quantum phase transition (QPT) is one of the most impor-
tant concepts in the many-body quantum theory. As a central
and fundamental transition phenomenon at the temperature of
absolute zero, it describes an abrupt change in the ground state
of a many-body system due to the quantum fluctuations [1,2].
The experimental observation of a QPT from a superfluid (SF)
to a Mott insulator (MI) in a gas of ultracold atoms [3] inspired
great interest in investigating clean, highly controllable, and
strongly correlated bosonic systems [4]. Actually, the ultracold
atomic gases [5] have become an ideal platform to study
many-body physics because of their enormous applications
and the advanced experimental techniques available in the
fields of atomic and optical physics [6].

In recent years, a remarkable development in the afore-
mentioned field is to convert ultracold atoms to molecules
via Feshbach resonance [7–9] or photoassociation [10–12]
techniques. Compared with the fermionic model in these kinds
of systems, the bosonic model is of interest for theoretically
exploring the QPTs. When both ultracold atoms and molecules
are bosons, the systems possess a few degrees of freedom
and a large particle number, which can greatly simplify the
calculations. On the other hand, the atom-molecule conversion
systems can be well described by the mean-field theory when
the particle number is large enough. These features have
stimulated a lot of effort to study the adiabatic evolution
[13–18], geometric phase [19,20], and phase transition [21,22]
of the systems. Instead of using the traditional approaches for
describing a QTP (i.e., using the concepts of order parameter
and symmetry breaking), recently Santos et al. adopted the
concepts of entanglement and fidelity to investigate the QPT
in a two-level bosonic atom-molecule system [21]. Motivated
by this work, we discussed the same problem from the perspec-
tives of scaling laws and Berry curvature [22]. However, the
connection between the mean-field Berry phase and the phase
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transition in this type of bosonic model, and the properties
of the QPT in a three-level atom-molecule system, remain
unresolved, which calls for further theoretical considerations.

As a continuous work, in this paper we investigate the
quantum phase transition in an ultracold atom-molecule
conversion system by adopting a �-type three-level bosonic
model. Based on this model, we first discuss the structure
of quantum energy levels and analyze the properties of
the ground state. In order to compare the phase-transition
properties with a similar two-level model [21], we study
the energy gap, the ground-state fidelity, and the mean-field
geometric phase, respectively. We illustrate that when the ratio
of the coupling strength between two molecular modes to the
coupling strength between the atomic mode and the upper
molecular mode exceeds a critical value, a similar QPT from a
mixed atom-molecule phase to a pure molecular phase is also
observed in our system. To characterize this transition, we
derive the analytical expression of the critical point by using
the mean-field approach and obtain two critical exponents via
the study of scaling laws numerically. In particular, we find that
this three-level system shows many striking properties that
are different from the previous two-level model [19,21,22]:
(i) The above two typical models belong to different univer-
sality classes due to the different scaling laws and critical
exponents of QPTs. (ii) For the three-level model, the discon-
tinuous behavior of the ground-state geometric phase at the
critical point is similar to the topological index characterizing a
topological phase transition. (iii) The behavior of the geometric
phase is found to be a signal to identify the existence of the
QPT in the system and suggests that one can further explore
the underlying mechanism to classify QPTs according to the
behavior of the geometric phase.

Our paper is organized as follow: In Sec. II, we give the
second-quantized model and its mean-field description. In
Sec. III, we explore the properties of energy levels and ground
states. In Sec. IV, we choose the characteristic scaling law,
fidelity, and adiabatic geometric phase to describe the QPT.
Section V presents our conclusion.
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II. THREE-LEVEL MODEL AND ITS
MEAN-FIELD DESCRIPTION

The system we consider here is illustrated schematically in
Fig. 1. It describes the process of creating ultracold diatomic
molecules from bosonic condensed atoms, which constitutes
a �-type three-level model. In the three-mode description,
each mode |α〉 (α = a,g, and e represent the atomic mode, the
ground-state molecular mode, and the excited-state molecular
mode, respectively) is associated with an annihilation operator
β̂ (β = a, bg , and be) due to the basic assumption that the
spatial wave functions for these modes are fixed. By setting
the energy of the atomic mode to zero, the Hamiltonian of
the system takes the following second-quantized form with
h̄ = 1 [20]:

ĤS = ωeb̂
†
eb̂e + ωgb̂

†
gb̂g

+
(

�de
iνd t b̂†eb̂g + �pe−iνpt

√
N

b̂†eââ + H.c.

)
, (1)

where νd and νp are the frequencies of two laser pulses
�d and �p, respectively. The frequencies ωg and ωe spec-
ify the molecular ground-state and excited-state energies,
respectively. The total atom number N = Na + 2(Ng + Ne),
with Na = â†â, Ng = b̂

†
gb̂g , and Ne = b̂

†
eb̂e, commutes with

the Hamiltonian (1) and is therefore conserved. Notice that
the laser-pulse parameter �p can be complex. To achieve
this, one can split the laser pulse into two beams and then
recombine and focus them on the system. As a result, we
can express the complex parameter �p as �p = ξ1 + ξ2e

−iϕ

with ξ1 and ξ2 being real numbers, where the phase factor ϕ

is determined by the difference of optical paths between the
two laser beams [20]. To carry out a comparative study to see
the crucial differences between the three-level and two-level
atom-molecule conversion systems, here we choose the above
collisionless model and, in this case, the analytical solution
can be obtained. The effects of particle interactions on the
atom-molecule conversion efficiency and the QPT properties
have been discussed in Refs. [23,24], respectively. The results

FIG. 1. Schematic diagram of a three-level atom-molecule con-
version model coupled by two laser pulses �d and �p . The stable
atomic state, the molecular ground state, and the molecular excited
state are denoted by |a〉, |g〉, and |e〉, respectively. � measures the
detuning of the pump laser �p with respect to the transition from |a〉
to |e〉.

showed that the particle interactions mainly change the critical
point and slightly affect the critical exponents.

For convenience, we rewrite the above Schrödinger picture
Hamiltonian as ĤS = Ĥ0 + Ĥ1, where

Ĥ0 = νpb̂
†
eb̂e + (νp − νd )b̂†gb̂g, (2)

Ĥ1 = (ωe − νp)b̂†eb̂e + (ωg − νp + νd )b̂†gb̂g

+
(

�de
iνd t b̂†eb̂g + �pe−iνpt

√
N

b̂†eââ + H.c.

)
. (3)

Then we choose ωe = ωg + νd and apply the interaction
picture, i.e., ĤI = eiĤ0t Ĥ1e

−iĤ0t , and the Hamiltonian finally
becomes

ĤI = �(b̂†eb̂e + b̂†gb̂g) +
(
zb̂†eb̂g + ρe−iφ

√
N

b̂†eââ + H.c.

)
, (4)

where the parameters � = ωe − νp, z = �d , ρ = |�p|, and
φ = arg(�p) have been introduced.

To complement the quantum description and gain insight
into the existence of a QPT in our model, we adopt a
semiclassical description of the system following the usual
mean-field approach, which has been proven to be a powerful
tool for studying ultracold atoms and Bose-Einstein conden-
sates (BECs). In the semiclassical limit N → ∞, the quantum
model becomes classical and one can replace the operator
β̂ with a corresponding complex number β (β = a,bg,be),
i.e., H = �(|be|2 + |bg|2) + z(b∗

e bg + b∗
gbe) + ρ[e−iφb∗

e a
2 +

eiφbe(a∗)2]. Using the equations idβ/dt = ∂H/∂β∗, we can
obtain the following Schrödinger equations with the nor-
malization condition |a|2 + 2(|bg|2 + |be|2) = 1 to govern the
dynamical behavior of the system:

i
d

dt
|ψ〉 = Hmf |ψ〉, (5)

where

Hmf =

⎛
⎜⎝

0 0 2ρeiφa∗

0 � z

ρe−iφa z �

⎞
⎟⎠ , (6)

and |ψ〉 = (a,bg,be)T . In this system, the mean-field Hamil-
tonian H contains terms b∗

e a
2 and be(a∗)2 describing the

coupling between atom pairs and diatomic molecules, which
obviously does not have U(1) gauge invariance. We notice
that even though the Hamiltonian matrix Hmf is not conjugate
symmetric, the original system represented by Eq. (4) is
Hermitian and the total system energy is bound. When the
particles are bosons and the number of particles in the system
is large, the quantum system can be well described by the
mean-field Hamiltonian. In this description, the system can be
cast into a nonlinear system due to the fact that creating one
molecule needs two atoms. Mathematically, the mean-field
Hamiltonian Hmf is a function of the instantaneous wave
function as well as its conjugate. It is a non-Hermitian matrix
and invariant under the following transformation [18]:

|ψ〉 → Us |ψ〉 = ei�(θ)|ψ〉 = e
i

(
θ 0 0
0 2θ 0
0 0 2θ

)
|ψ〉. (7)
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The lack of U(1) gauge transformation is a particularly
interesting point of the above mean-field model, which may
lead to some new properties of the system. In the subsequent
sections, based on models (4) and (5), we will discuss the QPT
in the system from both the fully quantum and the mean-field
perspectives.

III. ENERGY LEVELS AND GROUND STATES

Since N is conserved, one can diagonalize the quantum
Hamiltonian ĤI . For simplicity, hereafter we assume that
N is even; then the Hilbert space of the N -particle system
can be reduced to 1

2 (N
2 + 1)(N

2 + 2) dimension in the Fock

basis, i.e., |na〉|ng〉|ne〉 = (na!ng!ne!)−1/2(â†)na (b̂†g)ng (b̂†e)ne |0〉
with |0〉 being the vacuum state, where ng = 0,1, . . . ,N

2 ,
ne = 0,1, . . . ,N

2 − ng , and na = N − 2(ng + ne) represent
the particles in states |bg〉, |be〉, and |a〉, respectively. By
directly diagonalizing the Hamiltonian matrix with a fixed
N , we obtain the eigenenergy levels and the ground states of
the system as shown in Figs. 2 and 3, respectively.

It is well known that a typical �-type three-level system
supports dark-state solutions with zero eigenvalue [16,25,26].
This type of state can result in a phenomenon known as coher-
ent population trapping (CPT). For our system, when � = 0,
from Figs. 2(b)–2(d) we see that the energy levels with energy
value being zero are degenerate, while other nonzero-energy
levels are nondegenerate and are symmetrically distributed
in both sides of the center level. This symmetric energy
structure is determined by the symmetry of the Hamiltonian

FIG. 2. (Color online) Quantum energy levels for different parti-
cle numbers: (a) N = 2, (b) N = 4, (c) N = 6, and (d) N = 8. The
thick and thin lines denote the cases � = 0 and � = 0.2, respectively.
The energies are shown in units of Nρ, while the parameters z and �

are rescaled by ρ.

FIG. 3. (Color online) Atomic fraction in the ground state vs the
parameter z with � = 0 and � = 0.5. Both z and � are rescaled
by ρ.

ĤI with φ = 0, i.e., the change of variables (z,ρ) → −(z,ρ)
is equivalent to the unitary transformation b̂e → −b̂e. In this
case, the degeneracy of the zero-energy level (i.e., d) is given
by

d =
⌈(

N

2
+ 1

) /
2

⌉
= 1

4
(N − Mod[N,4]) + 1. (8)

The symbol �� stands for the ceiling function, which maps a
real number to the smallest following integer.

Notice that if the parameter � has a perturbation, the
symmetry mentioned above of the system with � = 0 will
be broken. This leads to the shift of the energy levels and the
zero-energy level splitting. For example, when � = 0.2 and
N = 8 [see Fig. 1(d)], all energy levels are pushed up and the
zero-energy level is split into three nonzero-energy levels. For
different N , the maximum number of energy levels should be
(N

2 + 1)(N
2 + 2)/2.

Now we discuss the ground-state properties which are
closely associated with the QPT in the system. On one hand, by
diagonalizing the Hamiltonian ĤI numerically, for both � = 0
and � 	= 0, we calculated the ground states with different total
atom numbers. The results for the atomic population fraction
(i.e., Na/N ) in the ground state are demonstrated in Fig. 3. We
found that the atomic fraction in the ground state decreases and
gradually approaches zero as the ratio of the coupling strength
between two molecule modes to that between the atom mode
and the molecular mode increases. On the other hand, we
study the ground state from the mean-field perspective. Based
on model (5), we obtain the mean-field ground state from
the eigenequation Hmf(ā∗,ā)|ψ̄〉 = �(μ)|ψ̄〉 with μ being the
chemical potential for atoms and |ψ̄〉 being the eigenstate.
For � = 0, z � 0, and ρ > 0, we obtain the eigenvalue, and
the corresponding eigenfunction for the ground state is as
follows:

μ0 =
⎧⎨
⎩

− z
2 , z > 2ρ,

− (z2−2ρ2)
√

z2+8ρ2

4
√

3ρ2 , z < 2ρ;
(9)
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FIG. 4. (Color online) (a) The energy of the mean-field ground
state and its (b) first and (c) second derivatives with respect to coupling
parameter z. The parameters z and � are rescaled by ρ.

|ψ̄0〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

0
1
2

− 1
2

⎞
⎟⎠ , z > 2ρ,

⎛
⎜⎜⎜⎝

√
4−z2/ρ2
√

6
z

4ρ
e−iφ

−
√

z2+8ρ2

4
√

3ρ
e−iφ

⎞
⎟⎟⎟⎠ , z < 2ρ.

(10)

For � 	= 0, although the solutions to the ground state can
also be obtained analytically, the expressions are generally
too messy to be instructive. We therefore simply display the
results in Fig. 3. From Fig. 3, we found that for both � = 0
and � 	= 0, the results for the quantum model (4) approach the
analytical mean-field results with increasing the total particle
number N .

It should be mentioned that for the nonlinear system (5),
the classical energy E is not equal to the chemical potential,
and the relation between them is E = μ ± ρ|b̄e||ā|2. We have
calculated the ground-state energy E0 analytically and find
its second derivative possesses a discontinuity at a critical
point zc = 2ρ + �, as shown in Fig. 4. This divergence
behavior implies that the system will undergo a second-order
phase transition in the thermodynamic limit. When z < zc, the
system is in an atom-molecule mixture phase (i.e., |ā|2 > 0),
and when z > zc, the system is in a pure molecule phase where
|ā|2 = 0. In the mixture phase, the asymptotic behavior of the
ground state in the vicinity of the critical point with � = 0 is
given by the variation of the parameter s0 = |ā|2, i.e.,

s0|z→zc
= 1

6 [4 − zc(2z − zc)]. (11)

IV. QUANTUM PHASE TRANSITION

In the previous section, we demonstrated that the pro-
cess of converting ultracold atoms to homonuclear diatomic
molecules in a bosonic system is a QPT, which differs from
the well-known BCS-BEC crossover phenomena in fermionic
systems [27,28]. Now, we will describe and characterize this
phase transition from different perspectives.

A. Scaling laws

In order to understand the QPT in the system, we begin
our discussion by analyzing the dimensionless energy gap
between the first excited state and the ground state, namely,
�E = (E1 − E0)/ρ. With the help of diagonalizing the
Hamiltonian (4) numerically, we calculated the energy levels
with different particle numbers. For a fixed N , the energy gap
takes a minimum value at a point zN (it can be viewed as a
pseudocritical point of the N -particle system) and this point
just corresponds to the position of avoided level crossing (see
Fig. 2). Generally, the QPTs often occur at positions of level
crossings or avoided level crossings. As our system undergoes
avoided level crossings, the existence of the minimum of the
energy gap indicates a basic signature of the phase transition.
Similar to the phenomena studied in a two-level atom-molecule
system [21] and in other systems, we found that the gap �E in
our system also approaches zero at a single point rather than
over an interval of the dimensionless parameter z/ρ with the
particle number N → ∞. This specific phenomenon implies
that when N → ∞, the ground state is degenerate at the point
zc where there is no phase, which is a requirement for the
occurrence of a broken-symmetry phase [21].

To capture more features of QPT in the system, we study the
scaling behavior of the energy gap near the critical point. To
this end, we first calculate the energy gap for different values
of parameter � and the results are shown in Fig. 5. Either for
the variation of the total atomic number N versus |zN − zc|
[see Fig. 5(a)] or for the change of the minimum of the energy
gap (i.e., �Emin) with respect to N [see Fig. 5(b)], the same
characteristic scaling laws have been observed for different �,
and different curves in each figure with a same slope give the
evidence.

In the quantum model (4), the total atom number N can be
regarded as a correlation length scale of the system, and then
one can connect this length scale to the offset between the
pseudocritical point and the critical point. Quantificationally,
we have

κ|zc − zN |ν 
 N−1, (12)

FIG. 5. (Color online) (a) The total atomic number N vs the offset
between zN and zc. (b) The minimum value of the energy gap (i.e.,
�Emin) at the pseudocritical point zN vs N . Solid lines are plotted
for guiding eyes, respectively, with the slopes being −1.54764 and
−0.32912 (from left to right).
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where ν 
 1.54764 is a critical exponent and κ 
 0.18273
is an inessential constant. This scaling law shows that the
pseudocritical point changes and approaches the critical point
as N−1/ν and clearly approaches zc as N → ∞ [see Fig. 5(a)].
From Fig. 5(b), we find another scaling law, that is

�Emin/N 
 �N−ζ , (13)

where � 
 1.67506 is a constant. ζ 
 1.32912 gives another
important exponent, namely, the dynamic critical exponent.
We should mention that all constants and exponents given in
the above two formulas are obtained in the case of � = 0.
For other cases, their values may change slightly. Comparing
the product of two exponents in our system with that of a
two-level atom-molecule system [22], we find that the values
are obviously different. This difference indicates that the above
two models belong to different universality classes.

B. Fidelity

Similar to other concepts, the behavior of the fidelity can
also be employed to identify the phase transition [29,30]. The
fidelity is a measure of the distance between two states and
this concept has been widely used in the field of quantum
information [31]. One can define fidelity through the modulus
of the wave-function overlap between two states, i.e.,

F (ψ1,ψ2) = |〈ψ1|ψ2〉|. (14)

Here we only focus on the behavior of the fidelity between
two ground states. One ground state is obtained when � = 0,
namely, |� = 0〉, and the other ground state is calculated
by treating � as a perturbation parameter, denoted as |� 	=
0〉. We have estimated the wave-function overlap between
two ground states with different particle number N while
varying parameter �. Figure 6 shows the fidelity between
the ground state |� = 0〉 and the ground state |� = α〉 with
α = 0.1,0.2,0.3, and 0.4. For both N = 50 and N = 100, we
can see that the fidelity |〈� = 0|� 	= 0〉| shows dip behavior at
the point corresponding to the pseudocritical point. The results
imply that the two ground states are distinguishable and there
is an obvious signal for the QPT as long as α 	= 0. Moreover,
we observe that the dip of the ground-state fidelity becomes

FIG. 6. (Color online) Ground-state fidelity vs the parameter z

with (a) N = 50 and (b) N = 100 for different �. The parameters �

and ρ are rescaled by ρ.

deeper and the point where the fidelity has a minimum varies
with increasing of the value of α; this phenomenon is very
different from that in a two-level atom-molecule model where
the fidelity has a minimum at the same point [21]. The reason
is that in our model, the phase-transition point zc is determined
by the relation zc = 2ρ + �. For a larger α, we found that the
distinguishability of the two states increases and the position
of the minimum of the fidelity evidently changes.

We compare the results obtained in the case of N = 50
with the results for N = 100. For the same �, it is seen that
the position of the minimum fidelity for N = 100 is closer
to the critical point zc than that for N = 50. In fact, we have
calculated the ground-state fidelity with varying the particle
number N and find that for a fixed α, with increasing N , the
overlap between the two states becomes smaller (i.e., the two
states are more distinguishable) and the position where the
minimum fidelity occurs moves toward 2ρ + �. Thus, in the
finite particle number case, the occurrence of the minima of
the fidelity gives information about the phase transition in the
system.

C. Geometric phase

In this section, we investigate the behavior of the ground-
state geometric phase starting from the mean-field model
(5). In the following, to obtain analytical results, we focus
our attention on the case where the detuning is absent (i.e.,
� = 0). To employ the procedures for calculating geometric
phase in nonlinear systems proposed in Refs. [19,32], we intro-
duce some variables, namely, a = √

1 − 2(p1 + p2)eiλ, bg =√
p1e

i(2λ+q1), and be = √
p2e

i(2λ+q2), where λ = arg(a) de-
notes the total phase, p1 = |bg|2 and p2 = |be|2 are the
population probabilities of the ground-state and the excited-
state molecules, respectively, and q1 = arg(bg) − 2 arg(a) and
q2 = arg(be) − 2 arg(a) are the relative phases. With the help
of these variables, the three-level system can be cast into a
classical Hamiltonian,

H = 2z
√

p1p2 cos(q1 − q2)

+ 2ρ
√

p2[1 − 2(p1 + p2)] cos(q2 + φ). (15)

The Schrödinger equations (5) together with the normalization
condition lead to

dλ

dt
= −2ρ

√
p2 cos(q2 + φ), (16)

and

dpi

dt
= −∂H

∂qi

,
dqi

dt
= ∂H

∂pi

, (17)

with i = 1 and 2. These four equations have established a
connection between the projected Hilbert space spanned by
S(pi,qi) and the parameter space spanned by R(z,ρ,φ).

To calculate the geometric phase for the ground state of
the system, for simplicity, we construct a closed loop C in the
parameter space by treating z and ρ as constants and varying
φ from 0 to 2π with time. The system is assumed to evolve
adiabatically along the cyclic path with rate ε = | dφ

dt
| ∼ 1

T
,

where T is the period of the cyclic evolution. Initially,
we prepare the system in the ground state of Hmf (φ = 0),
and after a cyclic adiabatic evolution, the state acquires
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a geometric phase besides the dynamical phase. Since the
adiabatic parameter ε  1, it can be regarded as a small
parameter during the process for determining the geometric
phase. Following the method in Ref. [32], we expand dλ/dt

in a perturbation series in ε, i.e.,

dλ

dt
= λ0(ε0) + λ1(ε1) + O(ε2), (18)

to separate the pure geometric part from the total phase. The
time integrals of the zero-order term and the first-order term
in Eq. (18) give the dynamic phase and the geometric phase
in the adiabatic limit, ε → 0 or T → ∞, respectively, and the
contribution from the higher-order terms will vanish.

During the adiabatic evolution, the system fluctuates around
the ground state due to the small but finite value of ε. This fact
allows us to expand the variables as pi = p̄i(R) + δpi(R) and
qi = q̄i(R) + δqi(R) with i = 1 and 2, where (p̄i ,q̄i) stand
for the instantaneous ground state, and δpi and δqi denote
the fluctuations induced by the slow change of the system.
By substituting these expressions back into Eq. (16), when
z < 2ρ, we have

λ0 = −μ0(R), (19)

λ1 = −2p̄2
√

p̄1z + ρ[p̄2(6p̄2 + 6p̄1 − 1) + δp2]√
p̄2

, (20)

where the chemical potential of the ground state
is μ0 = −2z

√
p̄1p̄2 − 3ρ

√
p̄2[1 − 2(p̄1 + p̄2)]. Moreover,

from Eqs. (17), we have

δp2 = 2
√

p̄2
(
zp̄2 + zp̄1 − 4ρp̄

3/2
1

)
ρ
[
z(1 + 6p̄2 + 6p̄1) − 16ρp̄

3/2
1

] dφ

dt
. (21)

To deduce Eqs. (20) and (21), we have used the fixed-point
equations ∂H

∂pi
|(p̄i ,q̄i ) = 0 and the condition d

dt
δqi ∼ O(ε2).

Combining Eq. (21) with Eq. (20), and using the fixed-point
values corresponding to the ground state, i.e., (p̄1,q̄1; p̄2,q̄2) =
( z2

16ρ2 ,q̄2 ± π ; z2+8ρ2

48ρ2 , ± π − φ), we obtain

λ1 = 1

6

dφ

dt
. (22)

Integrating Eq. (22) over T with respect to time, we have

λg =
∫ T

0
λ1dt = 1

6

∫ 2π

0
dφ = π

3
. (23)

For comparison, we give the result that is directly calculated
from the Berry’s formula [33], i.e.,

λb = i

∫ 2π

0
〈ψ̄0|∇φ|ψ̄0〉dφ = π

6

(
2 + z2

ρ2

)
. (24)

Now we consider the situation z > 2ρ. In this case, the
ground state, i.e., p̄1 = p̄2 = 1/4, is independent of the
parameter R. Simple calculations from Eqs. (16) and (17)
lead to

dλ

dt
= z

2
= −μ0, (25)

and then

λ =
∫ T

0
λ0dt = −

∫ T

0
μ0dt = λd. (26)

FIG. 7. (Color online) Comparison between the numerical results
for the ground-state geometric phase with T = 500 and the analytical
results given by Eq. (23). The dotted line denotes the results obtained
from Berry’s formula. The inset illustrates the numerical results
around the critical point with different T . The parameter z is rescaled
by ρ.

This result implies that the geometric phase λg = 0 in the
case z > 2ρ. In summary, the above theoretical calculations
demonstrate that the mean-field geometric phase of the ground
state jumps from zero to π/3 when the system undergoes the
phase transition from a mixture phase to a pure molecular
phase. These analytical predictions have been checked by
numerically solving Eq. (5) or Eqs. (16) and (17), as illustrated
in Fig. 7. We see that if the evolution period T is large
enough, the simulated results show a good agreement with the
analytical prediction. We use Fig. 8 to exhibit the convergence
behaviors of the ground-state and the geometric phase with
increasing T , and a large convergence rate has been observed.
It is worth emphasizing that different values of the geometric
phase in different parameter regions can be an evident
signature of the QPT in the system.

FIG. 8. (Color online) The convergence of population in the
(a) ground-state molecular mode and (b) geometric phase, with
respect to the evolution period T for z/ρ = 1.
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V. CONCLUSION

We have investigated the quantum phase transition in
a three-level atom-molecule conversion system. By using
different approaches, we confirm that the system exhibits
a second-order phase transition which is similar to a QPT
exhibited in a two-level bosonic model [21]. First, through
analyzing the properties of the energy gap, we derive two
scaling laws and the corresponding critical exponents. It
was found that the two-level model and our model belong
to different universality classes. Second, we discuss the
ground-state fidelity. A minimum value of the fidelity near the
critical point has been found. Finally, we have calculated
the ground-state geometric phase, and a discontinuous behav-
ior at the critical point has been shown. This phenomenon
is similar to that studied in a system of a Bose-Einstein
condensate in an optical cavity [34]. It establishes a connection
between the ground-state geometric phase and the QPT
in an interacting atom-molecule bosonic model following the
early works in a spin-chain system [35,36]. In summary, we

have studied the characteristic scaling laws of the QPT and
given the connection between the abrupt change behavior
of the ground-state geometric phase at the critical point and
the QPT. Our mean-field geometric phase might potentially
be observable in future experiments due to the significant
development in the field of creating ultracold molecules via
Feshbach resonances [37] or a stimulated Raman transition
[10,38]. Our findings also suggest that one can further explore
the underlying mechanism to classify QPTs according to the
behavior of the geometric phase.
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Nature (London) 415, 39 (2002).

[4] D. Tilahun, R. A. Duine, and A. H. MacDonald, Phys. Rev. A
84, 033622 (2011).

[5] See, e.g., L. Pitaevskii and S. Stringari, Bose-Einstein Conden-
sation (Clarendon, Oxford, 2003).
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