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Interaction-induced merging of Dirac points in non-Abelian optical lattices
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We study the properties of an ultracold Fermi gas loaded in a square optical lattice and subjected to an external
and classical non-Abelian gauge field. We calculate the energy spectrum of the system and show that the Dirac
points in the energy spectrum will remain quite stable under on-site interaction of certain strength. Once the
on-site interaction grows stronger than a critical value, the Dirac points will no longer be stable and merge
into a single hybrid point. This merging implies a quantum phase transition from a semimetallic phase to a
band insulator. The on-site interaction between ultracold fermions could be conveniently controlled by Feshbach
resonances in current experiments. We propose that this interaction-induced merging of Dirac points may be
observed in the ultracold-Fermi-gas experiments.
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I. INTRODUCTION

One of the most interesting properties of graphene [1], a
single layer of carbon atoms packed in a honeycomb lattice,
lies in the fact that the low-energy excitations obey a linear
dispersion relation [2] around the so-called Dirac points
and thus can be used as a test bed for relativistic quantum
electrodynamics. Consequently, it is now possible to observe
many remarkable phenomena in table-top experiments, such as
Klein tunneling [3,4] and the relativistic extension of Landau
levels [5–7], which usually only occur in high-energy physics
[8]. This advantage of graphene has stimulated great interest in
the investigation of Dirac points [8] in many other systems. In
particular, ultracold atoms in optical lattices provide a versatile
playground where the properties of condensed-matter systems
can be simulated [9,10] in a highly controllable manner,
such as the superfluid-Mott insulator transitions of Hubbard
models [11–13]. A quantum-optical analog of graphene can
be achieved by loading ultracold fermionic atoms such as 40K
or 6Li [12,13] into a hexagonal optical lattice [14]. The effects
of Dirac points were discussed in the context of ultracold
atoms in honeycomb lattice [14] and T3 (rhombic) lattices [15].
Moreover, much more intriguing phenomena arise when these
systems are subjected to artificial non-Abelian gauge fields
[16–18], such as the non-Abelian Aharonov-Bohm effect [17],
non-Abelian atom optics [19], quasirelativistic effects [20], or
exotic topological phase transitions [21].

Here we would like to emphasize a fact that the non-Abelian
artificial gauge field also provides an interesting setup where
Dirac points emerge in a square optical lattice [22], which is
originally limited to staggered fields [23,24]. In this article, we
consider a similar system in which two-component (two-color)
ultracold fermionic atoms are trapped in a square optical
lattice. And the dramatic difference between these two systems
comes from the repulsive on-site interaction introduced into
the model by us. References [21,22] mentioned above mainly
dwelled on free Fermi gases on two-dimensional (2D) optical
lattices. We study the effects of repulsive on-site interaction
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on the energy spectrum of the 2D Fermi gas loaded into a
square optical lattice and subjected to a non-Abelian artificial
gauge field. Implementing a self-consistent mean-field theory,
we show that the Dirac points in the energy spectrum remain
quite stable under repulsive on-site interaction of certain
strength. When the on-site interaction grows stronger than a
critical value, the Dirac points will no longer be stable and
two Dirac points merge into a single point. This merging
indicates a quantum phase transition between a semimetallic
phase and a band insulator [14,25–31]. And one thing worthy
to be mentioned here is that once the two Dirac points merge,
the final dispersion relation becomes quite exotic—it is linear
in one direction but parabolic in the other orthogonal direction.
Very recently, a well-designed experiment has been carried
out by Leticia et al. [32], in which the creating, moving, and
merging of Dirac points has been realized with a Fermi gas
loaded into a tunable honeycomb lattice. While the creating,
moving and merging of Dirac points in the experiment [32]
is generated by designing complex lattice geometries, the
merging of the Dirac points in our model is induced by strong
repulsive on-site interaction. Since pairwise interactions could
be conveniently controlled by means of Feshbach resonances
[33], we propose that the interesting merging of Dirac points in
our model may be experimentally observed and characterized
in non-Abelian optical lattices. The non-Abelian optical lattice
could be prepared by generalizing the recent experiment [16],
as proposed in Refs. [17,18].

II. MODEL AND HAMILTONIAN

We consider a two-component (two-color) Fermi gas
trapped on a square optical lattice and subjected to an artificial
non-Abelian gauge potential. Fermionic atoms in the system
are interacting with a repulsive on-site interaction. It is well
known that this pairwise interaction can be freely tuned
by means of Feshbach resonances [33] in ultracold-atom
experiments nowadays. The Hamiltonian of the system reads

H = −t
∑
〈rr′〉

∑
τ,τ ′

(
c†rτ e

−i
∫ r

r′ A·dlcr′τ ′ + H.c.
) + V

∑
r

nr↑nr↓,

(1)
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where t is the hopping amplitude, cr,τ (c†r,τ ) is the fermionic
annihilation (creation) operator at site r of the square optical
lattice, τ = ↑ , ↓ can be regarded as a pseudospin index, 〈rr′〉
denotes that the sum is over nearest neighbors and V is the
strength of the on-site interaction between fermionic atoms.
The coordinate of a fermion is given by r = (ma,na), where
m,n are integers and a is the lattice constant of the square
optical lattice. Here we set h̄ = e = 1. The external gauge
potential has the following form, A = B0

2 (−y,x) +
a(Bασy,Bβσx), in which B0, Bα, Bβ are experimentally con-
trollable parameters and σx,y are the Pauli matrices. This
intriguing artificial gauge field can be realized following the
proposals [17,18,34] along the lines of the recent experiment
[16]. After some algebra, the original Hamiltonian (1) becomes

H = −t
∑
〈rr′〉

∑
τ,τ ′

(c†rτ [Urr′]ττ ′cr′τ ′ + H.c.) + V
∑

r

nr↑nr↓,

(2)

where Urr′ is the matrix form of a nontrivial unitary operator
accompanying the hopping between lattice site r and its nearest
neighbor r′. If the hopping is along x axis, Urr′ = Ux(m) =
e−iπ�mei�ασy . If the hopping is along the y axis, Urr′ =
Uy(n) = e−iπ�nei�βσx . � = B0a

2 is the Abelian magnetic
flux, and �α,β = Bα,βa2 is the non-Abelian flux. Fermions
hopping around an elementary plaquette undergo a unitary
transformation [22] U = Ux(m)Uy(n + 1)U †

x (m + 1)U †
y (n).

The boundary between Abelian regime and non-Abelian
regime is well defined by the gauge-invariant Wilson loop
[22,34] W = trU . Here we constrain ourselves to the non-
Abelian regime, where the Wilson loop fulfills |W | < 2 and
we set the Abelian flux � = 0.

In the noninteracting limit of Hamiltonian (1), i.e., the
case in which fermions hop freely between neighboring sites
without any interaction, Hamiltonian of the system is of
quadratic form and can be analytically solved by Bogoliubov
transformations. The energy spectrum of this case has been
beautifully analyzed in the literature [22], where the fermion
gas becomes a collections of noninteracting quasiparticles.
The spectrum of the system develops four independent
Dirac points at KD ∈ {(0,0), (π

a
,0), (0, π

a
), (π

a
, π

a
)} ∈ BZ in

the neighborhood of the π -flux point (i.e., �α,�β = π/2).
However, once the on-site interaction is taken into account
in Hamiltonian (1), it is not of quadratic form any more and
therefore cannot be solved by a Bogoliubov transformation
directly. This is the case we consider in this article. We
study the repulsively interacting fermions on a square optical
lattice subjected to a non-Abelian gauge field by means of
self-consistent mean-field theory. Our starting point is Eq. (2).

III. MEAN-FIELD THEORY

We mainly consider the repulsive interaction regime in this
paper. As the on-site interaction grows stronger and stronger,
fermionic atoms with different colors on the square lattice tend
to repel each other and avoid staying on the same lattice site.
Once the interaction strength is over a critical point, the square
optical lattice at half-filling will enter a phase in which each
site of the lattice is occupied by a single atom [see Fig. 1(b)].
Therefore, we define �r = V 〈c†r↑cr↓〉 as our order parameter.

FIG. 1. (Color online) (a) Two-component (two-color) ultracold
fermionic atoms trapped in a square optical lattice and subjected to
a non-Abelian artificial gauge field. The circle filled with red (gray)
color denotes internal atom state |↑〉 (|↓〉). Ux(m) and Uy(n + 1)
are unitary operators induced by the external artificial gauge field.
(b) The self-consistent mean-field order parameter � vs on-site
interaction V . The system size is 24 × 24 and we set the convergence
criterion to 10−4.

Under this mean-field approximation, the Hamiltonian (2) can
be written in quadratic form,

HMF = −t
∑
〈rr′〉

∑
ττ ′

(c†rτ [Urr′]ττ ′cr′τ ′ + H.c.)

−
∑

r

(�rc
†
r↓cr↑ + H.c.) + V N

2
+ 1

V

∑
r

|�r|2. (3)

Through a canonical transformation, the above Hamiltonian
can be diagonalized by solving the following Bogoliubov–de
Gennes (BdG) equation [35]:

∑
r′

(
hrr′,↑ Orr′

O∗
rr′ hrr′,↓

) (
un

r′

vn
r′

)
= En

(
un

r′

vn
r′

)
, (4)

where hrr′,τ = −t[Urr′]ττ , Orr′ = −�rδrr′ − t[Urr′]↑↓, and
(un

r′ ,v
n
r′ ) is the eigenvector corresponding to the eigenenergy

En. The self-consistent equation of the order parameter is

�r = V
∑

n

un
rv

n∗
r tanh

(
En

2kBT

)
. (5)

We solve the set of BdG equations self-consistently via the
exact diagonalization method in real space. The system size
of 24 × 24 is used in the calculation and the convergence
criterion of �r is set to be 10−4 in units of the nearest-neighbor
hopping t . We find that the order parameter is uniform
(�r = �, where � is real) in the vicinity of the π -flux regime.
Our calculations [see Fig. 1(b)] show that as the on-site inter-
action V increases from zero, the order parameter turn out to
be nonzero at Vc ≈ 5.88t and the system undergoes a quantum
phase transition from a semimetallic phase to a band insulator.

IV. INTERACTION-INDUCED MERGING
OF DIRAC POINTS

By the above-mentioned self-consistent mean-field theory,
we transform the original Hamiltonian into the quadratic
form (3). Implementing appropriate Fourier transformations,
Eq. (3) can be easily diagonalized in momentum space.
The corresponding energy spectra are shown in Fig. 2. As
the mean-field order parameter � grows stronger, the two
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FIG. 2. (Color online) Merging of Dirac points in band structure
of system as � grows stronger (�α = �β = π/2). Top: portrait of the
energy spectrum in kx direction. Bottom: evolution of the two Dirac
points. (a) � = 0. There are two normal Dirac points. (b) � = 1.0.
The two Dirac points moves closer. (c) � = 2.0. Two Dirac points
merge into a single hybrid point, which signals the quantum phase
transition. (d) � = 2.5. A gap is opened.

originally separate Dirac points [Fig. 2(a)] will first move
closer [Fig. 2(b)], then merge into a single hybrid point
at kh = ( π

2a
,0). Around this hybrid point p = k − kh, the

low-energy properties of the system are accurately described
by a Dirac Hamiltonian

Heff =
∑

p


†
pHD
p, HD = cxσypx − cyσxp

2
y, (6)

where 
p = (cp↑,cp↓)T is the relativistic spinor, σx and σy are
Pauli matrices and cx = 2at sin �α , cy = at sin �β represent
the effective speed of light. From this Hamiltonian we can
see that the energy spectrum is linear in the kx direction
but quadratic in the ky direction [Fig. 2(c)]. The merging
of the two Dirac points signals a quantum phase transition
from the semimetallic phase to a band insulator [31,32]. If
the order parameter � grows even stronger, a gap will be
opened [Fig. 2(d)], which indicates a band-insulator phase.
The self-consistent mean-field theory calculations show that
the order parameter � remains zero as long as the on-site

FIG. 3. Density of states (DOS) of system vs order parameter �.
(a) � = 0, (b) � = 1.0, (c) � = 2.0, (d) � = 2.5.

interaction is smaller than Vc = 5.88t . Once the strength of the
on-site interaction is over Vc, � will turn out to be a nonzero
number which is not smaller than �c = 2. This can be easily
seen in Fig. 1(b). Therefore, the spectrum shown in Fig. 2(b)
will not be observed in reality. We give out this spectrum in
Fig. 2 just for comparison.

To characterize the merging of Dirac points more clearly,
we calculate the density of states (DOS) and cyclotron mass
mc for different strengths of on-site interaction (i.e., different
values of �, correspondingly). The results are shown in Figs. 3
and 4. For the density of states in Fig. 3, we find that dramatic
difference appeared at the occasion when two Dirac points
merge into a hybrid one. While the DOS displays two peaks
for the case of � = 0 [Fig. 3(a)], there are four peaks in the case

FIG. 4. (Color online) Cyclotron mass mc vs �. (a) � = 0, (b)
� = 1.0, (c) � = 2.0, (d) � = 2.5. Inset: comparison between (a)
and (c) around the zero-energy point.
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of � = 2 [Fig. 3(c)]. Moreover, for � = 2 [Fig. 3(c)], DOS
turns out to be nonzero at E = 0. These differences would
serve as an indication of the merging of the Dirac points.
In Fig. 4, we give out the cyclotron mass mc for different
values of � and, correspondingly, for different strengths of
on-site interaction. Comparing Figs. 4(a) and 4(c), we find
that besides the difference in the numbers of peaks, the curve
of mc changes from concave to convex around the zero-energy
point as shown in the inset of Fig. 4(c). This change signals a
quantum phase transition between the semimetallic phase and
band-insulator phase.

From Fig. 1(b), we can find that the mean-field order
parameter can be tuned by increasing the strength of the
on-site interaction. Therefore, this exotic merging of the Dirac
points induced by the on-site interaction may be observed
in ultracold-Fermi-gas experiments. This is quite different
from the works of Refs. [31,32], where they engineer Dirac
points by tuning the nearest-neighbor tunneling [31] or by
tuning the geometry of the optical lattices [32]. For the
concrete realization of the experiment, one may use 40K
atoms in F = 9/2 or F = 7/2 hyperfine manifolds or 6Li
with F = 1/2.

V. SUMMARY

The Dirac point plays a crucial role in many interesting
phenomena in condensed-matter physics; for example, the

massless electrons in graphene. In this article, we investigate a
two-component(color) ultracold Fermi gas which is loaded
in a square optical lattice. The addition of non-Abelian
artificial gauge field gives rise to Dirac points in the energy
spectrum of the system. We study the stability of Dirac points
against the repulsive on-site interaction. Our calculations
show that the Dirac points can be very stable under on-
site interactions smaller than Vc = 5.88t . At Vc, the Dirac
points turn out to be nonstable and merge into a hybrid
point. The final hybrid point is linear in one direction but
quadratic in the perpendicular direction. This merging of
the Dirac points denotes a quantum phase transition from
semimetallic phase to a band insulator. This exotic phe-
nomena may be observed in ultracold-Fermi-gas experiments
nowadays.

Note added in proof. Recently, we noticed another
work [36] considering the interaction effects in Hofstadter
problem.
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