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Abstract. We theoretically investigate the atomic energy band of ultracold atoms inside a laser-driven
optical cavity with Kerr medium. This cavity-atom hybrid system has two kinds of interactions: photon-
atom interaction and photon-photon one. We find the loops of the atomic energy band induced by photon-
atom interaction disappear when the Kerr interaction between photons exceeds a critical value. The reason
of the controllably atomic energy band loops by Kerr interaction is discussed.

1 Introduction

The ultracold atoms or Bose-Einstein condensate (BEC)
in a driven ultrahigh-finesse optical cavity is a nice exam-
ple of nonlinear system. One kind of nonlinearity arises
from the dispersive atom-light interaction, when the cavity
resonance is far detuned from the atomic resonance. This
atom-photon interaction imprints a position-dependent
phase shift on the cavity field. In turn, this shift can
affect the mechanical motion of atoms. This nonlocal
interaction is quite different from the usual local atom-
atom interaction. A lot of interesting results such as
self-organization of atoms [1–3], quantum phase transi-
tion of Dicke model [4–7] and Bose-Hubbard model [8],
adiabatic geometric phase [9], cavity-enhanced super-
radiant Rayleigh scattering [10], and optical bistabil-
ity [11–17] and loops of (atomic) band structure have been
reported [18].

The energy band of Bose-Einstein condensation in a
optical lattices displays the swallowtail loop [19], when
the strength of the atomic interactions is above a critical
value. The loop implies multiple solutions of the atomic
wave function within a single band. They can occur ei-
ther near the center or the boundaries of the Brillouin
zone [20,21]. For ultracold atoms in an optical cavity, the
loops and bistability are two sides of the same coin, one be-
ing for the atoms and the other for the light. As the loops
manifest themselves physically via a dynamical instabil-
ity which destroys the superflow [22], it is an interesting
question whether one can achieve the controllable loops
by making use of the photon-photon interactions in the
cavity. As we shall see, the answer is affirmative.

In this paper, we consider ultracold atoms in a pumped
optical cavity and the cavity are filled with the addi-
tional Kerr medium, which gives rise to a strong nonlinear
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interaction between photons. With Kerr interaction, the
photon in a cavity can block the injection of the other
photon due to photon blockade effect [23]. We show here
the loops of atomic energy band can be controlled by Kerr
interaction. With weak Kerr interaction, the energy band
of BEC shows clear loops and the intracavity photon num-
ber shows bistability. Above a critical Kerr interaction, the
loops and bistablity behaviors disappear. Therefore, one
can realize the controllable loops of energy band condi-
tioned on the Kerr interaction.

2 The model of system

We consider N two-level ultracold atoms with mass m in-
side a high-Q optical cavity. The atoms is tightly confined
in the transverse direction, such that the transverse size
of the condensate is smaller than the waist of the cav-
ity field. Thus, we only consider the dynamics of the hy-
brid atom-photon system along the cavity x axis. In the
large detuning limit and in the rotating frame with the
pump frequency, the Hamiltonian of the total system is
(� = 1) [24]

H = Ha +Hc +Hd. (1)

The corresponding Hamiltonian for the condensate atoms
and atom-cavity interaction can be written as

Ha =
∫
dx φ†(x)

[
− 1

2m
d2

dx2
+Vext+U0 cos2(kx)a†a

]
φ(x),

(2)
that for the cavity field and its damping are

Hc =Δca
†a+iη(a†−a) +

1
2
χa†2a2, Hd =−iκa†a. (3)

In the case of weak atom-atom interactions and a shal-
low external trapping potential Vext, we have set Vext = 0
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and neglected the atom-atom interactions [25]. Here φ†(x)
is the creation operator of atoms, and a† is that of cavity
photons with frequency ωc, wave vector k = 2π

λ and mode
function cos(kx). The maximum light shift which an atom
experiences in the cavity mode is given by U0 = g2

0/Δa

with the single atom-photon coupling constant g0. The
pump laser with strength η and frequency ωp is detuned
from the empty cavity resonance frequency ωc, namely,
Δc = ωc − ωp. κ denotes the cavity decay. Giant optical
Kerr nonlinearities are obtained by placing a ξ(3) medium
inside a cavity [26], with χ = 3ω2

cRe[ξ(3)]/2ε0Vc, ε0 being
the dielectric constant of the medium, Vc being the vol-
ume of the cavity, and ξ(3) being the third-order nonlinear
susceptibility.

Applying the mean-field approximation, the equations
of motion for atoms with ψ(x) = 〈φ(x)〉/√N derived from
Heisenberg operator equations reduce to

i
d

dt
ψ(x) =

[
− 1

2m
d2

d2x
+ U0 cos2(x)α†α

]
ψ(x), (4)

and that for optical field α = 〈a〉 is

i
d

dt
α = Δcα+ iη + χα†α2 − iκα+NU0〈cos2(x)〉α, (5)

where the length is scaled by k, the energy by
ER = k2/2M , the time by 1/ER, and 〈cos2(x)〉 ≡ ∫

dx
ψ∗(x) cos2(x)ψ(x).

In the experiment of Brennecke et al. [24], κ ∼ MHz
and ωr ∼ kHz, that the cavity decay is almost three orders
of magnitudes faster than the motion of the condensate. So
it is reasonable to assume that the cavity field follows the
condensate adiabatically and the cavity field is solved as

nph = α†α =
η2

κ2 + (Δ′
c +NU0〈cos2(x)〉)2 , (6)

with Δ′
c = Δc + χnph. Substituting this back into equa-

tion (4) gives us a nonlinear Schrödinger equation for the
atomic motion:

i
d

dt
ψ(x) =

[
− 1

2m
d2

dx2
+

U0η
2

κ2 + (Δ′
c +NU0〈cos2(x)〉)2

× cos2(x)
]
ψ(x). (7)

Notice the photon number in this equation is not a exter-
nal parameter but must be determined self-consistently
with equation (6). The physical reason is the interdepen-
dence between the atoms and the photon, deriving from
the atom-light coupling. More specifically, the spatial dis-
tribution of atoms controls the additional phase shift of
the light, and the depth of the optical lattice influenc-
ing the atomic wave function is determined by the ampli-
tude of the light. Therefore, equations (6) and (7) must
be solved self-consistently.

Formally, the equations of motion are very similar to
the counterparts in reference [18], except for the additional
Kerr term in the steady photon number in equation (6).

Actually, they are very different as the photon number
is partly determined by the Kerr term in equation (6).
Taking the interaction between the photon and atoms into
consideration, the Kerr interaction of photon will play a
non-trivial role in the properties of the system.

Moreover, on the one hand, the nonlinear Schrödinger
equation (7) could be derived as an equation of motion
using Hamilton’s (classical) equation,

i
d

dt
ψ(x) =

δE[ψ(x), ψ(x)∗]
δψ(x)∗

, (8)

with energy functional

E[ψ(x)] =
N

π

∫
dx

∣∣∣∣dψ(x)
dx

∣∣∣∣
2

− η2

κ
arctan

(
Δ′

c +NU0〈cos2(x)〉)2
κ

)
, (9)

where the first term represents the kinetic energy. The
second one denotes an atom-light coupling, that can be
interpreted as the product of the phase of the steady-
state cavity field and the incident photon current from
the pump laser.

On the other hand, according to the Bloch theorem,
the eigenfunction of equation (6) with the periodic poten-
tial cos2(x) can be written as

ψ(x) = exp(iqx)Uq(x), (10)

with the quasimomentum q cofined in the first Brillouin
zone q ∈ [−1, 1) as the potential being periodic with pe-
riod π, and Uq(x + π) = Uq(x). Expanding the periodic
function Uq(x) to a Fourier series, the Bloch wavefunction
can therefore be written as

ψ(x) = exp(iqx)
∑

n

aq,n exp(i2nx). (11)

Substituting this Bloch wavefunction into equation (9),
the resulting function are numerically extremized with re-
spect to aq,n. The normalization of ψq(x) is maintained
throughout. The parameters aq,n are taken to be real, and
the Fourier series is terminated at n = −M, . . . ,M , deter-
mined by the convergence of the energy functional [20,21].

In the following, we will study the band structure of
atoms, i.e., the relationship between the energy functional
and quasimomentum. This requires the quasimomentum
to be a good quantum number, which implies cold atoms
are delocalized in many lattice sites and have long-range
phase coherence. Experimentally, we can prepare these
Bloch states making use of the similar method as in the
free optical lattice case. A cigar-shaped BEC near the zero
quasimomentum Bloch state can be created by slowly turn
on an optical lattice along its longitudinal direction. Other
Bloch states can be achieved by accelerating the lattice
for a certain amount of time. These experimental tech-
niques of adiabatic turning-on and accelerating optical lat-
tices have been demonstrated successfully with either cold
atoms [27,28] or BECs [29].
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Fig. 1. (Color online) The energy functional
E[ψ(x)] in the first band as a function of the
quasimomentum q. (a) and (b) correspond to Kerr
parameter χ = 0 and χ = 700wR, respectively.
Other parameters are N = 104, U0 = wR, and
κ = 350wR, η = 909.9wR , Δc = 3140wR [18].
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Fig. 2. (Color online) The energy functional
E[ψ(x)] in the first band as a function of the quasi-
momentum q. (a) and (b) correspond to Kerr pa-
rameter χ = 0 and χ = 4000wR, respectively. The
other parameter is the same to Figure 1 except for
η = 2.8 × 325wR, Δc = 2100wR.

3 Results and discussions

In previous section, we have discussed the model of the hy-
brid cavity-cold atoms system. In this section, we study
the band structure of atoms numerically. The swallow-
tail loop of the band structure was observed in [19–21]
for an interacting BEC in an free optical lattice. How-
ever, the nonlinearity induced loops in the two cases are
very different. The nonlinearity arising from atom-atom
interaction depends on the density of a BEC in an opti-
cal lattice, which is local usually, whereas the nonlinear-
ity in the cavity-cold atom case is nonlocal usually. In a
high-fineness cavity, the photons can bounce off so many
times before it decays outside, which effectively induces
the non-local interaction. In a word, the cavity is vital for
this nonlocal interaction.

The loops in the atomic energy band can induce a
hysteresis effect [22] when the quasimomentum is swept
through the band, and a loss of adiabaticity even with
infinitely slowly swept [30]. This scenario has been con-
firmed recently in experiment [31], and has some similarity
with the hysteresis of the bistability of cavity photons [32],
which has two different critical parameters corresponding
to the negative or positive scanning.

When there is no Kerr interaction, the energy spec-
trum E[ψ] as a function of quasimomentum q is shown in
Figure 1a with the same parameters as in reference [18] to
check the correctness of our codes. This figure implies that
our codes are consistent with that of reference [18]. With
the sufficient large Kerr parameter χ, the loop structure
of the energy band disappears as displayed in Figure 1b.
The single loop of Figure 1 appears near the center of the
Brillouin zone. Is it possible to control the symmetry loops
near the boundaries of the Brillouin zone? Figure 2 shows
this point is affirmative. However, interestingly, a much

larger Kerr parameter than the former case is needed. We
will come back to this point latter. These results implies
we can efficiently control the loop making use of Kerr in-
teraction between cavity photons.

The upper results can be understood as follows. If χ
is small, the main interaction of the system is the disper-
sive atom-light interaction, which can induce the loop of
atomic energy band and optical bistability of cavity field.
When χ is very big, the photon blockade induced by Kerr
can drastically reduces the photon number, then coupling
between atoms and the cavity field. It is reasonable to ex-
pect that there is no loop in the limit of the sufficiently
large χ.

Specifically, for a limited Fourier series

ψ1(x) = eiqx[c0(t) + c1(t)ei2x + c1(t)e−i2x], (12)

it is checked numerically that we can approximately obtain
the same results as the larger M . For this state, it is easy
to complete the integration 〈cos2(kx)〉 as

〈cos2(kx)〉 =
1
2

+
1
2
(Re(c0c∗2 + Re(c0c∗1))

=
1
2

+
1
2
(X(t) + Y (t)). (13)

The equations of motion with X(t) and Y (t) can be de-
rived as

Ẍ + (4q + 4)2X + (q + 1)U0nph|c0|2 = 0,

Ÿ + (4q − 4)2Y − (q − 1)U0nph|c0|2 = 0,

iȧ = Δca+ iη + χa†a2 − iκa

+NU0

[
1
2

+
1
2
(X(t) + Y (t))

]
a. (14)
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Fig. 3. (Color online) The photon number in the steady
state nst as a function of the Kerr parameter for the fixed
quasimomentum q = 0.5. The other parameters is the same to
Figure 1.

The steady state equation of photon with reduces to

nph = 〈a†a〉 = η2

κ2+

[
Δ′′

c +
NU2

0
16(q2−1)

nph+χnph

]2 , (15)

withΔ′′
c = Δc+NU0

2 and |c0|2 � 1. This equation is a basic
equation in the field of nonlinear optics [33], which can
display the bistability or not depending on the parameters.
And a standard linear stability analysis of equation (14)
shows that only two solutions are dynamically stable.

And according to the theory of the roots of the poly-
nomial equation, we can easily understand the following
facts from equation (15): (a) a sufficient large Kerr pa-
rameter χ can suppress the loop when the equation has
a single root, and (b) in order to suppress loop, the Kerr
interaction in the case loop appearing near the bound-
aries of Brillouin zone (with finite q) is much larger than
the case loop appearing at the center (with q = 0). As
an example, Figure 3 displays the variation of the optical
photon number nst in the cavity with respect to the Kerr
parameter χ. This figure clearly displays we can control
the bistability with Kerr interaction of photon. The two
effects, the bistability of photon and the loop of atomic
band structure, are the different sides of one coin. So the
Kerr provide an controllable knobs to the loop.

4 Conclusion

In summary, we have studied the effect of a Kerr medium
on the behavior of a BEC in a pumped cavity field.
We have shown that the loop structure may completely
disappears when the Kerr interaction exceeds a critical
strength. These effects are due to the photon blockade
mechanism. All the results demonstrate that the Kerr in-
teraction is a new handle to coherently control the dy-
namics of BEC in a cavity field and hence could be useful
in the realization of tuneable quantum-mechanical devices
in the future.

This work is supported by the National Natural Science Foun-
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