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We study the optical bistability for a Bose–Einstein condensate of atoms in a driven optical cavity with a Kerr

medium. We find that both the threshold point of optical bistability transition and the width of optical bistability

hysteresis can be controlled by appropriately adjusting the Kerr interaction between the photons. In particular, we

show that the optical bistability will disappear when the Kerr interaction exceeds a critical value.
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1. Introduction

The Bose–Einstein condensate (BEC) in a driven

ultrahigh-finesse optical cavity is a nice example of a

nonlinear system. The nonlinearity arises from the

dispersive atom–light interaction when the cavity res-

onance is far detuned from the atomic resonance.

This atom–photon interaction imprints a position-

dependent phase shift on the cavity field. In turn,

this shift can affect the mechanical motion of atoms.

This nonlocal interaction is quite different from the

usual local atom–atom interaction. Many interest-

ing results, such as self-organization of atoms,[1] quan-

tum phase transitions in the Dicke model[2] and the

Bose–Hubbard model,[3] adiabatic geometric phase,[4]

cavity-enhanced super-radiant Rayleigh scattering,[5]

the Josephson effect,[6,7] and optical bistability,[8] have

been reported.

Optomechanics is another important field of re-

search, where the center-of-mass motion of a mechan-

ical oscillator is manipulated by the radiation pres-

sure force of a single-mode Fabry–Pérot resonator.[9]

Optomechanics is a paradigmatic system to explore

the correlation between light and mesoscopic objects,

which may possibly be applied to quantum informa-

tion processing. And it can be simply described with

only a few modes of the cavity field and one mode

for the motion of the mirror.[10,11] Recently, optome-

chanics and ultracold atoms in optical resonators are

unified, the collective motion of an ensemble of atoms

can be considered to play the role of the movable

mirror.[12]

Optical bistability was extensively studied in the

1980s due mostly to the prospect of its use as an

optical switch in all-optical computers.[13] However,

there are limited applications because of the lack of

controllability. Recently, more intriguing phenomena,

the controlled threshold points of optical bistability

transition and width of optical bistability hysteresis

curve, have been studied theoretically and observed

experimentally.[14,15] The ultracold atoms in optical

resonators also show strong matter-wave bistability[16]

and optical bistability.[12,17]

In this paper, we consider a BEC in a pumped op-

tical cavity, and the cavity is filled with an additional

Kerr medium, which gives rise to a strong nonlinear

interaction between photons. A single photon in the

cavity can block the injection of the second photon

due to the photon blockade effect induced by the Kerr

interaction. This could be used to realize a single-

photon turnstile device in quantum computation.[18]

We show here that the bistability of photons in the op-

tical cavity can be controlled by the Kerr interaction.

With a weak Kerr interaction, the intracavity photon
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number shows clear bistability. The threshold point

of optical bistability transition shifts upward and the

width of optical bistability hysteresis decreases with

the increase of the Kerr interaction. Above a criti-

cal Kerr interaction, the bistable behavior disappears.

Therefore, we can realize a controllable optical switch

conditioned on the Kerr interaction.

2. Model of system

We consider a BEC of N two-level atoms each

with mass m inside a high-Q optical cavity of length

L. The BEC is tightly confined in the transverse direc-

tion, so the transverse size of the condensate is smaller

than the waist of the cavity field. Thus, we only con-

sider the dynamics along the cavity x axis. In the

large detuning limit and the rotating frame with the

pump frequency, the Hamiltonian of the whole system

is (~ = 1)[12]

H = Ha +Hc +Hd, (1)

where

Ha =

∫
dx ψ†(x)

[
− 1

2m

d2

d2x
+ Vext

+U0 cos
2(kx)a†a

]
ψ(x) (2)

is the corresponding Hamiltonian for the condensate

atoms including the atom–cavity interaction, and

Hc = ∆ca
†a+ iη(a† − a) +

1

2
χa†2a2,

Hd = −iκa†a (3)

are the Hamiltonians for the cavity field and its damp-

ing. In the above formulas, ψ† is the creation operator

of the BEC, and a† is the creation operator of the cav-

ity photon with frequency ωc, wave vector k = 2π/λ,

and mode function cos(kx). The maximum light shift

experienced by an atom in the cavity mode is given

by U0 = g20/∆a with the single atom–photon coupling

constant being g0. The pump laser with strength η

and frequency ωp is detuned from the empty cavity

resonance frequency ωc, namely, ∆c = ωc−ωp. The κ

denotes the cavity decay. Giant optical Kerr nonlin-

earities are obtained by placing an ξ(3) medium inside

the cavity,[19] with χ = 3ω2
cRe[ξ

(3)]/2ϵ0Vc, where ϵ0 is

the dielectric constant of the medium, Vc is the vol-

ume of the cavity, and ξ(3) is the third-order nonlinear

susceptibility. In the case of weak atom–atom interac-

tions and a shallow external trapping potential Vext,

we can neglect the atom–atom interactions and set

Vext = 0.[12]

The photon recoil associated with the absorption

and the stimulated emission of light by the BEC re-

sults in the generation of symmetric momentum side

modes at ±2lk, where l is an integer. We consider

here the relatively simple situation in which the op-

tical field is weak enough so that only l = 1 and 2

side modes are significantly populated. To account

for this effect, we then expand the field operator in

Eq. (2) as[20]

ψ(x) ≃ [c0 +
√
2 cos(2kx)c1 +

√
2 cos(4kx)c2]/

√
L, (4)

where c0, c1, and c2 are the bosonic annihilation op-

erators for atoms in the zero-momentum state and

for the side-mode components with l = 1 and 2, re-

spectively. With the help of the above expansion, the

Hamiltonian (2) reduces to

Ha = 4ωr(c
†
1c1 + 4c†2c2) +

1

4
U0a

†a(2N +
√
2c†0c1

+
√
2c†1c0 + c†1c2 + c†2c1), (5)

where ωr = k2/2m is the atomic recoil energy, and

N =

2∑
i=0

c†i ci denotes the total number of atoms. From

now on, ωr is used to rescale all the parameters in the

Hamiltonian.

The Heisenberg equations of motion for the BEC

atoms are

i
d

dt
c0 =

1

4
U0a

†a
√
2c1,

i
d

dt
c1 = 4c1 +

1

4
U0a

†a(
√
2c0 + c2),

i
d

dt
c2 = 16c2 +

1

4
U0a

†ac1, (6)

and that for the optical field is

i
d

dt
a = ∆ca+ iη + χa†a2 − iκa+

U0N

2
+ c†H2c, (7)

where c = (c0, c1, c2)
T, andH2 =

1

4
U0


0

√
2 0

√
2 0 1

0 1 0

 .

In the experiment of Brennecke et al.,[12]

κ ∼ MHz and ωr ∼ kHz, i.e., the cavity decay is al-

most three orders of magnitude faster than the motion

of the condensate. So it is reasonable to assume that

the cavity field follows the condensate adiabatically,

then the cavity field is solved as

a =
η

κ+ i(∆′
c + c†H2c+ χa†a)

, (8)

with ∆′
c = ∆c +NU0/2.
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By applying the mean-field approximation c ∼√
Nz, a ∼ α, the equation of motion for the conden-

sate atoms is found to be

i
d

d t̃
z = (H1 + nphH2)z, (9)

and the photon number is

nph =
η2

κ2 + (∆′
c +Nz†H2z + χnph)2

, (10)

where t̃ = ωrt and H1 =


0 0 0

0 4 0

0 0 16

.

Formally, the equations of motion are very sim-

ilar to their counterparts in Ref. [21], except for the

additional Kerr term in the steady photon number in

Eq. (10). Actually, they are very different, as the pho-

ton number is partly determined by the Kerr term in

Eq. (10). With the interaction between the photon

cavity and the atoms taking into consideration, the

Kerr interaction of photon will play a non-trivial role

in the properties of the system.

3. Results and discussion

With a sufficiently slowly ramped up pumping

field, it is expected that the condensate and the opti-

cal cavity will follow their self-sustained steady states,

i.e., the two stationary sides are consistent with and

dependent on each other. Therefore, we should firstly

investigate the steady states of the system. We write

the steady state corresponding to a solution of Eq. (9)

as

zs(t̃) = zs exp(−iEst̃), (11)

then equation (9) reduces to

(H1 + nphH2)zs = Eszs, (12)

which is a nonlinear eigenvalue problem, because the

Hamiltonian H1 + nphH2 depends on the eigenstate

zs. We solve it by making use of the following

strategy.[21] At the first step, we take an arbitrary

trial photon number ntr, solve the ground state of the

Hamiltonian, and then substitute it into Eq. (10) to

obtain an output photon number nout. If nout = ntr,

then the solution is self-consistent, and a steady state

is obtained. Note the nonlinearity of the system,

the possibility of multiple steady-state solutions for

a given set of parameters is expected.[22−24]
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Fig. 1. (color online) Output photon number nout as a function of the trial photon number ntr. The intersection

points of the solid curves with the diagonal dotted lines correspond to steady states. In panels (a)–(d), Kerr

parameter χ and η are (0, 1.20×103), (50, 1.44×103), (100, 1.95×103), and (110, 2.5×103), respectively. The

other parameters are N = 4.8× 104, U0 = 0.25, and (κ,∆c) = (0.4, 1.2)× 104.[21]
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Figure 1 shows the output photon number nout
as a function of the trial photon number ntr when

the pump strength η is varied and the other param-

eters are fixed. For each curve, its intersection with

the dotted line of nout = ntr corresponds to a steady

state. It is clear that when the Kerr interaction is weak

(Figs. 1(a)–1(c)), there are three solutions. When

the Kerr parameter χ is larger than the critical value

(χc = 110 in Fig. 1(d)), only one intersection point

exists for each η.

This result becomes more evident in Fig. 2, where

the photon number at the steady state nst is plotted

as a function of η. When the Kerr interaction is weak

(Figs. 2(a)–2(c)), each η corresponds to three steady

states in the middle interval, and the middle solution

is the unstable one. With a large enough Kerr inter-

action (Fig. 2(d)), one η only corresponds to a single

nst in the whole interval.

n
st

n
st

n
st

n
st

500 1000 1500 2000
0

5

10

 η

ηc

W

(a)

500 1000 1500 2000
0

5

10

15

 η

(b)

1600 1800 2000 2200
0

5

10

15

20

 η

(c)

1000 2000 3000 4000
0

10

20

30

 η

(d)

Fig. 2. (color online) Photon number at steady state nst as a function of pump strength η. In the hysteresis

regime, the middle dashed line denotes the unstable solution. The parameters in panels (a)–(d) are the same to

those in the corresponding panels of Fig. 1.

The relationships among the threshold points of

optical bistability transition ηc, the width of optical

bistability hysteresisW , and the Kerr parameter χ are

also interesting. They are shown in Fig. 3. We find

numerically that ηc increases very quickly (Fig. 3(a))

andW undergoes a decrease (Fig. 3(b)) when the Kerr

parameter χ is increased. All these results imply that

we can achieve the controllable optical bistability of

the cavity field with the Kerr medium.

These results can be understood as follows. On

one hand, if χ is small, the main interaction of the

system is the dispersive atom–light interaction, which

can induce the optical bistability of the cavity field.

On the other hand, when χ is very large, if a photon

from the driving field has been injected into the cav-

ity, the second injected photon will be blocked. Only

after the first photon has left the cavity, the second

one can be injected. This photon blockade can dras-

tically reduce the photon number fluctuation, which

implies a reduced interaction between the side modes

of the BEC and the cavity field (note in Figs. 2(a)–

2(d), with increasing Kerr interaction χ, the photon

number decreases at a fixed η value). It is reasonable

to expect that there is only one steady solution in the

limit of sufficiently large χ. In the middle case, with

the increase of χ, the smooth changes of the bistabil-

ity of the optical field are that the threshold points

of optical bistability transition shift upward and the

width of optical bistability hysteresis decreases. Ac-

tually, the photon number Eq. (10) can be reduced

to

n3ph + n2ph
2∆′

c

χ+ βχ
+ nph

κ2 +∆′2
c

(χ+ βχ)2
− η2

(χ+ βχ)2
= 0

with the linear approximation (to the lowest order

of photon number) Nz†H2z ≃ βχnph + O(n2
ph).

[17]
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Due to the interdependence of the BEC and the pho-

ton, the subscript of β is explicitly written to de-

note the relying on χ (we numerically checked that

βχ ∈ [−175,−150] in our case). According to the the-

ory of the roots of the polynomial equation, it is rela-

tively simple to theoretically estimate the relationship

between ηc and χ as

ηc =

√
− 2

27

x+ y

βχ + χ
∼

√
s1

|βχ + χ|
,

with x = ∆′
c(∆

′2
c + 9κ2), y =

√
(∆′2

c − 3κ2)3, and

s1 ∼ 108. Therefore, ηc increases very quickly with

a small change of χ. And the width W is given by

W = η′c − ηc with η
′
c =

√
− 2

27
x−y
βχ+χ . According to this

expression, we numerically find that W is approxi-

mately a constant when χ is small compared to β,

then decreases with the increase of the Kerr parameter

χ. For a sufficiently large χ, the bistability hysteresis

disappears.
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Fig. 3. (color online) Panel (a) shows the variation of the crit-

ical strength of the pumping field ηc, with which the bistability

just exists, with respect to Kerr parameter χ. Panel (b) shows

the variation of the width of the bistability hysteresis W with

χ. The blue squares are the numerical results, and the red

dash lines are plotted for guiding eyes. The other parameters

are the same to those in Fig. 1.

4. Conclusion

In summary, we have studied the effect of the Kerr

medium on the behavior of a BEC in a pumped cavity

field. We have shown that as the Kerr nonlinearity in-

creases, the threshold point of optical bistability tran-

sition shifts upward, and the width of optical bista-

bility hysteresis decreases. Particularly, the bistable

behavior can completely disappear when the Kerr in-

teraction exceeds a critical strength. These effects are

due to the photon blockade mechanism, which sup-

presses the photon fluctuation. All the results demon-

strate that the Kerr interaction is a new handle to

coherently control the dynamics of the BEC in a cav-

ity field and hence could be useful in the realization of

tuneable quantum-mechanical devices in the future.
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