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A semiclassical quasistatic model is used to investigate the recollision dynamics in circularly polarized

laser fields. A velocity window for recollision to occur is found. Only when the return electron’s orbits are

irregular does significant double ionization take place. The model reproduces the experimental results for

magnesium and explains the apparently conflicting experimental results in terms of an analytical formula

that demarcates the phase diagram for the nonsequential double ionization in circularly polarized laser fields.
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Recollision, i.e., the phenomenon that the released elec-
tron can collide under intense laser force with the core, is at
the heart of strong-field physics. It is responsible for above-
threshold ionization, high-order harmonic generation, etc.,
and provides unprecedented access to the inner workings
of atoms and molecules [1]. The recollision dynamics for
nonsequential double ionization (NSDI) is of particular
theoretical interest because it provides a model for the
study of field-induced electron-electron (e-e) correlation
and the three-body Coulomb problem [2–4]. It is com-
monly believed that NSDI will be significantly suppressed
in circularly polarized (CP) fields because a transverse drift
velocity due to the rotating electric field causes the electron
to spiral away from the core, prohibiting the recollision and
NSDI. This picture has been verified by experiments for
helium and xenon [5], but not for others such as magne-
sium [6], NO, and O2 [7], with the latter showing evidence
of NSDI in CP fields. The conflicting evidence between the
experiments has motivated some classical simulations
[8,9], which indicate that �6% of the trajectories are
subject to recollision in pure CP fields. The double ioniza-
tion (DI) yields in the knee regime, as calculated from the
classical model, however, are 1 order of magnitude larger
than that in the experiment [6,9]. Considering that the
NSDI is in the quantum tunneling regime [10], investiga-
tion of the NSDI mechanism requires a model beyond the
pure classical description.

In this Letter, we investigate double ionization in CP
laser fields using a semiclassical quasistatic model, where
quantum tunneling dynamics is included in the ionization
process. Our model calculation reproduces the experimen-
tal results for magnesium quantitatively for the first time
and explains the apparently conflicting experiments (see
Fig. 1). Using the semiclassical model, we investigate the
subcycle dynamics of the correlated electrons and obtain a
phase diagram for the NSDI in CP fields.

Model calculation.—In our 3D semiclassical quasistatic
model [11,12], an electron is released at the outer edge of
the barrier. Its exit point in space and time and the initial
velocity distribution is exactly determined by the semiclas-
sical theory. The bound electron is allowed to tunnel
through the potential barrier with a probability given by
the WKB approximation whenever it reaches the outer
turning point [13,14]. In comparison to the classical mod-
els [8,9], the present semiclassical model depicts the initial
tunneling of the outer electron exactly and permits the
excited electron to tunnel out in the ionization dynamics.
The exit point is determined by the effective potential

in parabolic coordinates (atomic units are used throughout
this Letter unless otherwise specified) [15]: Uð�Þ ¼
�1=4�� 1=8�2 � �ðtÞ�=8 ¼ �Ip=4. Ip is the first

FIG. 1. Our model calculation on the ratios of double- over
single-ion yield with respect to the scaled field strength. For the
alkaline earth metal atoms, apparent knee structures emerge as
the signature of NSDI, while, for the rare gas atoms, knee
structures are absent. Experimental data are from Ref. [6].
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ionization energy of the atom, and � is the parabolic
coordinate relating to the Cartesian coordinate through
� � �2x, with the positive x direction assumed to be the
instantaneous polarization direction. Solving the Uð�Þ
equation gives �0, and the exit point is ð��0=2; 0; 0Þ in
Cartesian coordinates. The above potential predicts an
over-the-barrier threshold field �th ¼ I2p=2.

According to the semiclassical theory, the tunneled
electron has zero longitudinal velocity and a Gaussian

distribution of the transverse velocity [16] FðvtÞ ¼
exp½� ffiffiffiffiffiffiffi

2Ip
p

v2
t =j�ðtÞj�, where �ðtÞ ¼ �0fðtÞ½cosð!tÞêx þ

sinð!tÞêy� denotes the CP field, with �0 and ! being the

amplitude and frequency of the electric field, respectively,
and fðtÞ being the envelope of the pulse that has a constant
amplitude for the first ten cycles and turns off with a three-
cycle ramp. We consider the potential for the valence
electron-nucleus interaction as Vi

ne ¼ �½ðZ� 2ÞsðrÞ þ
2�=jrij, in which sðrÞ ¼ ½Hðer=d � 1Þ þ 1��1 is the screen
function [17] depicting the effect of the multielectron core,
Z is the nuclear charge, and H and d are two parameters.
For the bound electron, the initial position and momentum
are sampled from microcanonical distribution [18].
The subsequent evolution of the two valence electrons
with the above initial conditions is governed by Newton’s
equations.

The ratios of double- over single-ion yields at different
field strengths are calculated and shown in Fig. 1. The laser
wavelength is chosen as 800 nm to match the experiment
[6]. As shown in Fig. 1, our model calculation agrees with
the existing experiments and even reproduces the experi-
mental results for Mg quantitatively. We find that the
valence-core interaction described by the screening poten-
tials is important in quantitatively reproducing the experi-
mental data. We compare the result from the screening
potential with that from the Coulomb potential, and find
that the double ionization yields calculated from the
screening potential are larger by 1 order of magnitude.
This is because the screening potential is wider than the
Coulomb potential, and the struck electron is readily ex-
cited by the recollision.

Correlated dynamics.—To investigate the recollision
dynamics, we use a rotating frame (u, v, w) in which the
laser field becomes a static electric field in the u direction
with constant strength of �0. The equations for the outer

electron in the rotating frame are €uðtÞ þ 2! _vðtÞ ¼ � @�
@u ,

€vðtÞ � 2! _uðtÞ ¼ � @�
@v , and €wðtÞ ¼ � @�

@w , where � ¼
� 1

r � 1
2!

2r2 þ �0u is the effective potential energy and

rðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðtÞ2þ yðtÞ2þ zðtÞ2p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uðtÞ2þvðtÞ2þwðtÞ2p
. The

electron experiences two more forces in addition to the
Coulomb potential, namely, the centrifugal force !2r ¼
r 1

2!
2r2 and the Coriolis force 2!� _� (! ¼ !êz); _� ¼

ð _u; _v; _wÞ is the electron velocity in the rotating frame. The
system has a conserved quantity, the so-called Jaccobi

integral [19], J ¼ _�2

2 þ�. We project potential function

� onto the plane of ðu; vÞ and plot it in Fig. 2(a). The
parent ion is located at the origin, forming a deep well. The
maximum of the potential is located on the positive u axis.
On the negative u axis, there is a saddle point, through
which the electron can be released via quantum tunneling.
Tracing back the DI trajectories in the knee regime, we

find that some tunneled electrons climb up the barrier of
effective potential and enter the core regime, interact with
the bound electron, and successively trigger NSDI, as
shown in Fig. 2(a). In the CP case, the recollision is
weak because the return energy is usually small and not
enough to knock out the inner electron whose bound
energy is about 0.55 a.u. The valence electrons interact
with each other through multiple collisions, one electron
then emits first, and the other becomes excited and later
ionized by the laser field with a long time delay after the
recollision [see Fig. 2(b)].
The above picture is more clearly revealed by the

calculations on recollision times (tr), ionization times
[Fig. 2(c)], and time delays [Fig. 2(d)]. It is shown that
the released electrons return to the core in about 1.3 optical
cycles after tunneling, implying that the electrons will
spiral back into the third quadrant, as shown in Fig. 2(a).
The distribution of the time delays between the ionization
of two electrons is much wider, indicating that collision
excitation becomes an important channel in the ionization
of the second electron. In contrast, the time delay is usually

FIG. 2 (color online). (a) Contour plot of the potential � and
typical NSDI trajectories. The tunneled and bound electrons are
colored in blue and light purple, respectively. (b) Temporal
evolution of the electron energies and Coulomb repulsive energy
1=r12; the latter is colored in black. (c) Statistical analysis on
recollision and ionization times. The time zero point in (b),(c) is
the moment when the tunneled electron releases. (d) Statistical
analysis on time delays. The calculation is made for Mg with the
laser parameters of 0:02 PW=cm2 and 800 nm.
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small in linearly polarized (LP) fields where the collision is
strong and DI occurs soon after the recollision [20,21]. The
large time-delay trajectories observed here are somewhat
similar to the long quantum orbits responsible for double
ionization in elliptic polarized fields [10].

Return window—In CP fields, the classical scenario [22]
indicates that the electron released along the negative field
direction will have a drift velocity (vdrift ¼ �0=!) perpen-
dicular to the instantaneous polarized field direction and
cause the electron to spiral out of its parent ion without
return. When the drift velocity can be compensated by
initial transverse velocity, the recollision will revive
[8,9,23]. In our semiclassical model, the tunneled electron
has an initial transverse velocity satisfying a Gaussian
distribution. We thus expect that there is a window for
the initial transverse velocity, in which the tunneled elec-
trons can revisit their parent ion by Coulomb attraction.
The above picture is confirmed by our calculation on the
recollision distance based on the 2D effective potential
model in the rotating frame. Figure 3(a) shows that,
when the initial transverse velocities fall into a window
with left boundary vL ’ 0:4�0=! and right boundary vR ’
1:7�0=!, the tunneled electrons return with a minimum
distance less than 4 a.u., i.e., the range of the inner bounded
electron. Interestingly, the window is wide and its width
(scaled as �0=!) increases with higher field frequency and
decreases with larger field strength. A narrow window for
the first ionization time was found to associate with DI in
the classical model [8]. In our semiclassical model, the

transverse velocity distribution, instead of the first ioniza-
tion time, becomes essential for successful NSDI. Note that
the wide window does not necessarily lead to high return
probability because each return event is weighed by the
Gaussian distribution. In the knee regime for Mg, approxi-
mately 2% of the released electrons return.
Besides the drift velocity, the system has another char-

acteristic velocity, namely, the critical velocity vc. When
the initial transverse velocity of the tunneled electron is
above the critical velocity, it is capable of overcoming the
potential hump. The tunneled electron has an initial trans-
verse velocity _uð0Þ ¼ v0 þ!�0=2 and exit point �0 given

by �0 � ðIp þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2p � 2�0

q
Þ=�0. The second term is from

the rotating coordinate. Equating the electron’s energy J ¼
_u2ð0Þ=2þ�0 with the maximum effective potential�max,

we set up a critical velocity, vc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�max ��0Þ

p �
!�0=2, with �0 ¼ �2=�0 �!2�2

0=8� �0�0=2 and

�max � �!2=�0 þ �20=2!
2.

Comparing Figs. 3(a) and 3(b), we see that the velocity
window is divided into three regimes according to the two
characteristic velocities. In the regime ½vL; vc�, the return
energy [24] is small, and it is hard to ionize or even excite
the inner electron, while the weight of each DI event is high
in this regime because of relatively small velocity values.
In the regime ½vdrift; vR�, the return energy of the tunneled
electron is large. It can directly ionize the inner electron
through hard collision. However, the weight of each DI
event is very small because of the exponential decay of the
transverse velocity distribution. It slightly contributes to
the total DI yield. This explains why we observe few DI
trajectories with small time delay, as indicated in Fig. 2(d).
The DI events in our model calculation mainly fall into the
regime ½vc; vdrift�. More interestingly, we observe an un-
resolved regime, and successive magnifications of the re-
gime exhibit self-similar structures. This type of singular
structure is a signal for chaotic scattering [25] of the
released electron mediated by the Coulomb and the oscil-
lating laser fields. It is analogous to the phase-dependent
single-ionization energy spectrum in LP fields [11].
Dynamically, the released electron wanders chaotically
between the stable and unstable manifolds in the phase
space and gains energy from the laser field, giving rise to
higher return energy. Moreover, the chaotic motion is
associated with broadband frequency spectra that can res-
onantly excite the inner electron through stochastic reso-
nance excitation [26]. The irregular orbits were found to
account for the higher above-threshold energy spectra [11]
as well as the high-order harmonic generation [27]. It is
evident that this chaotic scattering assisted collision exci-
tation ionization contributes significantly to the NSDI.
Phase diagram.—According to the semiclassical model,

the ratios of double- over single-ion yield can be approxi-

mately expressed as ½X2þ�=½Xþ� ’ 1
10

R
�win FðvtÞdvtR1
0
FðvtÞdvt

, where

FðvtÞ is the Gaussian distribution on traversal velocity,

FIG. 3 (color online). (a) The recollision distance and return
energy with respect to the initial transverse velocity of the
tunneled electrons. (b) Initial velocity distribution that induces
the double ionization. The instantaneous polarized field direction
is set along the positive x. The calculation is made for Mg with
laser parameters of 0:02 PW=cm2 and 800 nm.
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�win is the recollision window, and the prefactor 1=10
accounts for the fact that only one-tenth of the return
trajectories can successively trigger NSDI. Considering
that the NSDI emerges mainly around critical velocity vc

and the width of the recollision window approximates to

�0=!, the above expression reduces to [28] ½X2þ�=½Xþ� ’
ð2I5pÞ1=4
10

ffiffiffi
�

p
!
exp½�I5=2p =2

ffiffiffi
2

p
!2�. In the above deduction, the

typical field strength, i.e., �0 ¼ �th=2 ¼ I2p=4, and long

wavelength limit of ! ! 0 are exploited. We then can

obtain an explicit expression for the NSDI criterion as! �
0:18ðIpÞ5=4, which corresponds to a ratio of 10�5 for the

double-to-single ionization yield. Below it, the double
ionization events are too few to be detectable in the experi-
ments. The analytic result is plotted in Fig. 4.

We also put on the rare gas atoms and alkali metal atoms
in Fig. 4 at an experimental laser wavelength of 800 nm. It
is clearly seen that all the rare gas atoms are above the
semiclassical criterion and the alkaline metal atoms are
below it, consistent with the existing experiments and our
model calculation. The phase diagram exhibits the laser
wavelength dependence of NSDI, as confirmed by our
numerical simulation. For example, if we shift the laser
wavelength to 1500 nm, our model calculation exhibits
that, for the Mg atom, the knee structure disappears.

In the completely classical model, both valence elec-
trons are set initially on the energy shell with ground
energy Eg [9]. When laser fields apply, one electron

might get ionized through the over-the-barrier trajectories
and double ionization most likely occurs when the
ionized electron revisits the core and collides with the
second electron. Hence, one can get a heuristic criterion

for the recollision: pmax � �0=!, where pmax ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEg � 1

a þ 8ffiffiffiffiffiffiffiffiffiffiffiffi
5a2�b2

p Þ
q

is the maximum admissible classical

momentum for ground-state energy Eg, and a and b are the

parameters used in the soft Coulomb potentials for
electron-nuclear and electron-electron, respectively. The
relation between the parameters satisfies Eg ¼ � 4

a þ 1
b .

The minus ground energy can be approximately regarded
as the sum of the first (Ip) and the second (I0p) ionization
potentials. With using an approximate relation between the
first ionization potential and the second ionization poten-
tial, i.e., I0p ¼ 2Ip; , we can obtain the classical boundary

expression as [28] ! ¼ I2p
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð 8ð1þ3bIpÞ

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
80�ð1þ3bIpÞ2

p � 15Ip
4 � 1

4bÞ
r

.

The demarcation lines from the classical model depend
on the soft parameter b and shift upward dramatically with
decreasing the parameter, as shown in Fig. 4. The specific
choice of b ¼ 1 is exploited in the simulation [9]. The
classical theory deviates largely from the semiclassical
result. For instance, at the long wavelength of 1500 nm,
the classical theory predicts that, for the Mg atom, the knee
structure should emerge as the signal of NSDI. The devia-
tion may be partly due to the fact that the completely
classical model has largely overestimated the recollision
probability and the NSDI yields accordingly [6,9].
In summary, with a semiclassical model, we achieve

insight into the recollision dynamics for NSDI with CP
laser fields. We find a velocity window for the recollision to
occur and unveil the important role of the chaotic return
electrons in triggering NSDI. We obtain an analytical
formula that demarcates the phase diagram for the NSDI
and compare it with that from the completely classical
model. The present theory should encourage further ex-
perimental verification of the predicted NSDI properties in
the light of the classicality or nonclassicality of NSDI in
CP fields.
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