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Abstract. We introduce the concept of geometric phase to the nonlinear coherent coupler. With considering
the adiabatic change of the distance-dependent phase mismatch, we calculate the adiabatic geometric phase
related to the supermode of the coupler analytically. We find that the phase depends on the input light
intensity explicitly. In particular, in the low and high intensity limits, the phase equals half of the area
on the Poincare sphere enclosed by the evolution loop of the system. At the critical intensity where
different supermodes merge, the phase diverges, which can be considered as the signal of a continuous
phase transition.

1 Introduction

A close examination of the quantum adiabatic theo-
rem [1–3] leads to the discovery of the adiabatic geomet-
ric phase, or the Berry phase [4]. Recently, this phase and
its extensions [5–9] have received renewed interest due to
their important applications in quantum computation and
quantum information [10–13]. According to the adiabatic
theorem, when a parameter of the system changes adia-
batically, the system, which is initially in an energy eigen-
state, will remain in this eigenstate, and thus will evolve
with the parameter simultaneously. When the parameter
returns to its initial value, the system will acquire a adi-
abatic geometric phase as well as the dynamical phase.
Motivated partly by the studies of Bose-Einstein conden-
sation [14–19], both the adiabatic theorem and the adi-
abatic geometric phase have been extended to nonlinear
systems [20–23]. In particular, the effect of nonlinearity
on the adiabatic process has been investigated in the cou-
pled waveguide system [24]. Some nonlinear waveguide
systems, described by the nonlinear Schrödinger equation,
can be directly used to observe the interplay between adi-
abatic evolution and nonlinearity. In addition, they can
serve as direct analogies to various other quantum pro-
cesses [24]. Therefore, these nonlinear waveguide systems
provide ideal models to study the nonlinear adiabatic evo-
lution.

One of the most simple nonlinear waveguide systems
is known as the nonlinear coherent coupler, which con-
sists of two parallel optical waveguides with Kerr nonlin-
earity [25]. When the two waveguides in the coupler are
different, the coupler is called asymmetric. In this paper,
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we consider the phase mismatch in the asymmetric cou-
pler changing adiabatically with distance, and calculate
the adiabatic geometric phase associated with the super-
mode of the coupler analytically. We find that the phase is
dependent of the input light intensity, and show the char-
acteristics of the phase at the critical light intensity where
different supermodes merge as well as in the low and high
intensity limits. Because the nonlinear coherent coupler
perform a number of useful functions in optical commu-
nications, including power division, power coupling, and
switching [26], we can expect that the geometric phase
presented here may have many prospective applications
in practice.

The plan of this paper is as follows. In Section 2, we
review the model describing the nonlinear coherent cou-
pler, and investigate the supermode of the coupler briefly.
In Section 3, we calculate the adiabatic geometric phase
related to the supermode analytically, and discuss its char-
acteristics. Section 4 is the conclusion.

2 Coupler and its supermodes

The model describing the propagation of the laser field
inside the coupler can be derived from the standard cou-
pled mode theory [27]. To be clear and self-contained, we
first introduce this model briefly. We begin by consider-
ing a linearly polarized laser field propagating inside the
coupler along the +z-direction. According to the coupled
mode theory, the electric field can be expressed as

E(x, y, z, t) =
1
2

∑

l

Al(z)El(x, y)ei(βlz−ωt) + c.c., (1)
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where ω is the frequency, El(l = 1, 2) is the only confined
mode of waveguide l, Al and βl > 0 are the correspond-
ing amplitude and propagation constant respectively. The
mode function El satisfies the orthonormalization rela-
tion βl

2ωμ0

∫
E∗

l · El′dxdy = δll′ and the wave equation(
∇2

⊥ + ω2

c2 [1 + χl(x, y)]
)

El = β2
l El, where ∇2

⊥ = ∂2

∂x2 +
∂2

∂y2 , and the susceptibility distribution

χl(x, y) =
{

χl, waveguide l,
0, otherwise. (2)

The electric field E itself satisfies
(
∇2 +

ω2

c2
[1 +

∑

l

χl(x, y)]

)
E = μ0

∂2

∂t2
PNL, (3)

where PNL is the nonlinear polarization. Because the laser
field is linearly polarized, there is only one component of
the third-order nonlinear susceptibility, denoted by χ

(3)
l ,

responsible for the Kerr nonlinearity, and the nonlinear
polarization

PNL =
3
2

∑

l

χ
(3)
l (x, y)|E|2E + c.c., (4)

where the nonlinear susceptibility distribution

χ
(3)
l (x, y) =

{
χ

(3)
l , waveguide l,

0, otherwise.
(5)

We now take the scalar product of equation (3)
with E∗

l (x, y), and integrate over the entire x − y
plane. Moreover, using the slowly varying amplitude ap-
proximation |βl

d
dzAl| � | d2

dz2 Al|, and assuming that∫
χ

(3)
l (x, y)|El|4dxdy is much larger than the other in-

tegrals related to the nonlinearity, we finally obtain the
coupled nonlinear Schrödinger equations

i
d

dz
A1 + α1A1 + k12e

i(β2−β1)zA2 + γ1|A1|2A1 = 0, (6)

i
d

dz
A2 + α2A2 + k21e

−i(β2−β1)zA1 + γ2|A2|2A2 = 0, (7)

where

α1 =
ωε0
4

∫
χ2(x, y)|E1|2dxdy, (8)

α2 =
ωε0
4

∫
χ1(x, y)|E2|2dxdy, (9)

k12 =
ωε0
4

∫
χ1(x, y)E∗

1 · E2dxdy, (10)

k21 =
ωε0
4

∫
χ2(x, y)E∗

2 · E1dxdy, (11)

γ1 =
3ω

4

∫
χ

(3)
1 (x, y)|E1|4dxdy, (12)

γ2 =
3ω

4

∫
χ

(3)
2 (x, y)|E2|4dxdy. (13)

Before proceeding further, we present a few comments
on equations (6), (7), and the parameters given in equa-
tions (8)–(13). First, we note that the phase mismatch
factors in the coupling terms of equations (6) and (7) ex-
ist only when β1 �= β2. Second, the parameters α1 and α2

serve only to modify β1 and β2. Third, from the conser-
vation of the total light intensity I = |A1|2 + |A2|2 in the
z-direction, we find k12 = k∗

21. For simplicity, we assume
that k12 = k21 = k > 0. Fourth, if χ

(3)
l > 0, and thus

γl > 0, we say that the nonlinear mechanism of waveg-
uide l is self-focusing; if χ

(3)
l < 0, and thus γl < 0, we

say that it is defocusing [28]. In the self-focusing case, the
refractive index increases locally with the power, while in
the defocusing cases it decreases.

Because the concept of adiabatic geometric phase orig-
inates from quantum mechanics, we need to map the above
model into a nonlinear quantum model. Specifically, intro-
ducing the nonlinear Hamiltonian

H(|A1|2, |A2|2) = −
(

α1 + γ1|A1|2 kei(β2−β1)z

ke−i(β2−β1)z α2 + γ2|A2|2
)

,

(14)

we can express the coupled nonlinear Schrödinger equa-
tions (6) and (7) as

i
d

dz

(
A1

A2

)
= H(|A1|2, |A2|2)

(
A1

A2

)
. (15)

Here we note that the evolution of (A1, A2)T in the +z-
direction corresponds to the time evolution of a nonlinear
two-level system in quantum mechanics. The eigenequa-
tion of H(|Ā1|2, |Ā2|2) reads

μ

(
Ā1

Ā2

)
= H(|Ā1|2, |Ā2|2)

(
Ā1

Ā2

)
, (16)

where μ is the eigenvalue, and (Ā1, Ā2)T is the eigenstate,
or the supermode of the coupler [26].

For convenience and without loss of generality, we fur-
ther write

(
A1

A2

)
=
√

I

(
cos(θ/2)e−iφ1

sin(θ/2)e−iφ2

)

=
√

I

(
cos(θ/2)

sin(θ/2)e−iφ

)
e−iφ1 , (17)

where 0 ≤ θ ≤ π, φ = φ2−φ1, and φ1 has been split off as
the overall phase. From equation (17), we know that the
state of the system, except for an overall phase, can be de-
noted by (θ, φ). Because θ and φ span a unit sphere, called
the Poincare sphere [26,27,29,30], the evolution of the sys-
tem without the overall phase corresponds to the move-
ment of the system on the Poincare sphere. Introducing
β = β2 − β1, α = α2 − α1, and substituting equation (17)
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into equation (15), we obtain

dθ

dz
= − 2k sin(φ − βz), (18)

dφ

dz
= − α − 2k cot θ cos(φ − βz)

− Iγ2 + I(γ1 + γ2) cos2(θ/2), (19)
dφ1

dz
= − α1 − k tan(θ/2) cos(φ − βz)

− Iγ1 cos2(θ/2). (20)

Similar to equation (17), we write the supermode
(Ā1, Ā2)T = (cos(θ̄/2), sin(θ̄/2)e−iφ̄)T , so that we can de-
note the supermode by (θ̄, φ̄). From equation (16), we
have

φ̄ =βz and φ̄ = βz + π, (21)

±2k cot θ̄ = − α − Iγ2 + I(γ1 + γ2) cos2(θ̄/2), (22)

μ = − α1 ∓ k tan(θ̄/2) − Iγ1 cos2(θ̄/2). (23)

Here and below, the upper sign is for φ̄ = βz, and the
lower sign for φ̄ = βz + π.

Introducing t = tan(θ̄/2), we can rewrite equation (22)
as

t4 ∓ α + Iγ2

k
t3 ∓ α − Iγ1

k
t − 1 = 0. (24)

Because 0 ≤ θ̄ ≤ π, only t ≥ 0 corresponds to the super-
mode of the coupler. Here we note that, if t0 is a solution to
equation (24) for the upper sign, −t0 will be a solution to
it for the lower sign. Therefore, we can find all supermodes
by solving equation (24) for either sign, and changing the
signs of the minus solutions. Actually, without having to
solve equation (24), we can analytically prove that, only
when

[2α + I(γ2 − γ1)]2/3 + (4k)2/3 = [I(γ1 + γ2)]2/3. (25)

Equation (24) has three solutions for either sign. If the
left-hand side of equation (25) is greater (less) than the
right-hand side, equation (24) has two (four) solutions for
either sign. This indicates that equation (25) determines
the parameter region where the number of the supermode
changes.

3 Adiabatic geometric phase

We consider an asymmetric coupler so that the phase mis-
match βz is nonvanishing, and the supermode changes
with z according to equation (21). Mathematically, the
supermode corresponds to the fixed point on the Poincare
sphere, therefore the change of the supermode corresponds
to the movement of the fixed point on the sphere. More-
over, we assume that β is small enough so that, according
to the nonlinear version of the adiabatic evolution condi-
tion [20,21], the system, which is in a fixed point at z = 0,
can remain in this fixed point, and thus also moves on

the Poincare sphere as z increases. When z reaches 2π/β
at last, the system will return its initial position on the
Poincare sphere, and the overall phase φ1 will acquire an
increasing amount, which consists of an adiabatic geomet-
ric phase Φ as well as the dynamical phase. To obtain the
expression for Φ, we need to use the method introduced in
reference [22,23] to separate the Φ-related term from equa-
tion (20). This is equivalent to calculate Φ as the difference
between the overall phase and the dynamical phase [31].
To proceed, we first note that, because β is small but fi-
nite, the system will fluctuate around the supermode dur-
ing the evolution process, i.e., φ = φ̄ + δφ and θ = θ̄ + δθ,
where δφ ∼ δθ ∼ O(β). Then, using equations (18)–(23)
and ignoring the terms ∼ O(β2), we have

dθ̄

dz
= ∓ 2kδφ, (26)

dφ̄

dz
=

1
2

[ ±4k

sin2 θ̄
− I(γ1 + γ2) sin θ̄

]
δθ, (27)

dφ1

dz
= μ − 1

2

[ ±k

cos2(θ̄/2)
− Iγ1 sin θ̄

]
δθ. (28)

Combining equations (27) and (28), we have

dφ1

dz
= μ − β

2

[
1 − cos θ̄ ∓ (I/4k)(γ2 − γ1) sin3 θ̄

1 ∓ (I/4k)(γ1 + γ2) sin3 θ̄

]
. (29)

Integrating the zero-order term μ over z from 0 to 2π/β,
we obtain the dynamical phase. Likewise, integrating the
Φ-related first-order term, we obtain the adiabatic geo-
metric phase

Φ = −π

[
1 − cos θ̄ ∓ (I/4k)(γ2 − γ1) sin3 θ̄

1 ∓ (I/4k)(γ1 + γ2) sin3 θ̄

]
. (30)

From equation (30), we know that the geometric phase
Φ is dependent of the total light intensity I. In the low
intensity limit I → 0, the nonlinear effect is negligible.
Then, equation (30) reduces to Φ = −π(1 − cos θ̄), which
denotes half of the area on the Poincare sphere enclosed
by the evolution loop of the system except for a sign due
to the definition of the overall phase. Noting that this
result is in accordance with the result obtained in linear
systems [4–9], we conclude that the geometric phase Φ
is a nonlinear extension of its linear counterpart. In the
low intensity limit, from equation (22), we have cos θ̄ →
∓ α√

α2+4k2 , and thus Φ → −π(1 ± α√
α2+4k2 ).

In the high intensity limit I → ∞, the nonlinear effect
is dominant. Then, using equation (22) to obtain cos θ̄, we
find that equation (30) still reduces to Φ = −π(1− cos θ̄).
That is to say, the geometric meaning of Φ is still the same
as in the low intensity limit.

To illustrate the geometric phase Φ and the supermode
in the high power intensity limit, we give them in Tables 1
and 2. From these two tables, we find that the supermodes
in Table 1 and in the last two lines of Table 2 confine the
laser field in one of the two waveguides. Then Φ = 0 or
−2π trivially. The supermodes in the first two lines of
Table 2 have an intensity distribution determined by the
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Table 1. All supermodes and Φ’s in the high intensity limit
I → ∞ with γ1γ2 < 0.

φ̄(γ1 > 0, γ2 < 0) φ̄(γ1 < 0, γ2 > 0) cos θ̄ → Φ →
βz βz + π 1 0

βz + π βz −1 −2π

Table 2. Same as Table 1 but with γ1γ2 > 0.

φ̄(γ1, γ2 > 0) φ̄(γ1, γ2 < 0) cos θ̄ → Φ →
βz βz γ2−γ1

γ1+γ2
− 2γ1

γ1+γ2
π

βz + π βz + π γ2−γ1
γ1+γ2

− 2γ1
γ1+γ2

π

βz βz + π 1 0
βz βz + π −1 −2π

ratio between γ1 and γ2. Then the values of Φ are also
determined by this ratio.

In contrast to the geometric phases in linear systems,
a remarkable feature of Φ lies in its divergence when

sin3 θ̄ = ± 4k

I(γ1 + γ2)
. (31)

From equations (22) and (31), we obtain

cos3 θ̄ =
2α + I(γ2 − γ1)

I(γ1 + γ2)
. (32)

Combining equations (31) and (32) yields equation (25)
exactly. This indicates that, only when equation (25)
holds, the geometric phase Φ may diverge. Noting that
equation (25) determines the parameter region where the
number of the supermode changes, we know that the di-
vergence of Φ is caused by the merging of the super-
modes. Actually, besides the divergence condition, from
equations (31) and (32), we can determine the merged
supermode completely. This indicates that the geometric
phase Φ characterizes the supermode precisely.

To illustrate the divergence of Φ when the supermodes
merge, we take α = 0 and γ1 = γ2, and give all super-
modes and Φ’s in Tables 3 and 4. Here we note that the
supermodes and Φ’s in the last two lines of these two ta-
bles exist only when |Iγ1| > 2k, and the geometric phase
Φ’s in the second lines diverge when |Iγ1| = 2k. At the
critical intensity I = 2k/|γ1|, the supermodes in the last
three lines of these two tables have the same φ̄ and cos θ̄,
and thus merge together. On the other hand, at the same
critical intensity, the geometric phase Φ’s in the last three
lines diverge.

In the perspective of the spontaneous symmetric
breaking [32], the supermodes in the first two lines of
Tables 3 and 4 are symmetric supermodes, and the su-
permodes in the last two lines are broken supermodes. As
the total intensity I increases adiabatically, the system,
which is initially in a symmetric supermode, can eventu-
ally settle in a broken supermode. This process is actually
a continuous phase transition occurs when |Iγ1| = 2k.
The divergence of Φ can be considered as the signal of
the phase transition. Recently, the relation between geo-
metric phases and phase transitions is proposed [33–39].

Table 3. All supermodes and Φ’s when α = 0 and γ1 = γ2 > 0.

φ̄ cos θ̄ Φ
βz + π 0 −π

βz 0 −π (unless Iγ1 = 2k)

βz [1 − ( 2k
Iγ1

)2]
1
2 −π + π[1 − ( 2k

Iγ1
)2]−

1
2

βz −[1 − ( 2k
Iγ1

)2]
1
2 −π − π[1 − ( 2k

Iγ1
)2]−

1
2

Table 4. Same as Table 3 but with γ1 = γ2 < 0.

φ̄ cos θ̄ Φ
βz 0 −π

βz + π 0 −π (unless Iγ1 = −2k)

βz + π [1 − ( 2k
Iγ1

)2]
1
2 −π + π[1 − ( 2k

Iγ1
)2]−

1
2

βz + π −[1 − ( 2k
Iγ1

)2]
1
2 −π − π[1 − ( 2k

Iγ1
)2]−

1
2

The geometric phase Φ in the continuous phase transition
provides a paradigm for this relation, and the general cor-
respondence between the divergence of Φ and the merging
of the supermode can be regarded as an extension of this
relation.

To illustrate the geometric phase Φ in other cases, we
need to calculate the supermode and Φ numerically. As an
example, in Figure 1, we show the changes of cos θ̄ and Φ
as γ2 tends to γ1 = 1 with α = 0 and k = 1. From this
figure, we can confirm the following features of cos θ̄ and Φ.
First, in the low intensity limit I → 0, we have cos θ̄ → 0
and Φ → −π for both φ̄ = βz and φ̄ = βz + π as given
before. Second, when the intensity I is large enough, cos θ̄
and Φ tend to the values given in Table 2. Third, when two
supermodes merge at the critical intensity obtained from
equation (25), the geometric phase Φ diverges. Fourth,
when γ2 tends to γ1, cos θ̄ and Φ tend to the values given
in Table 3.

4 Conclusion

In conclusion, we have calculated the adiabatic geometric
phase associated with the supermode of the nonlinear co-
herent coupler analytically. We found that, in the linear
and strong nonlinear limits, the phase is equal to half of
the area on the Poincare sphere enclosed by the evolution
loop of the system. At the critical intensity where two
or three supermodes merge, the geometric phase diverges,
which can be regarded as the signal of a continuous phase
transition. Because the Poincare sphere representation of
the supermode has a qubit structure [29,30], the extension
of our findings to the quantum domain may lead to use-
ful results for quantum information processes. We expect
that the adiabatic geometric phase presented here will be
confirmed experimentally in the near future.

This work is supported by the National Fundamental Re-
search Program of China (Contact Nos. 2007CB814800 and
2011CB921503), the National Natural Science Foundation of
China (Contact Nos. 10905027, 10725521, 91021021, 11075020,
and 11078001).
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Fig. 1. The changes of cos θ̄ and Φ as γ2 tends to γ1 = 1
with α = 0 and k = 1. (a, a′) γ2 = 2, (b, b′) γ2 = 1.1, (c, c′)
γ2 = 1.01, (d, d′) γ2 = 1.001.
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