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Adiabatic geometric phase for a Bose-Einstein condensate coupled to a cavity
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We investigate the geometric phase in a model of a Bose-Einstein condensate coupled to an optical cavity
in which both the condensate and the cavity are described with coherent states. When the argument of the
atom-cavity coupling term varies in time slowly from zero to 2π , we calculate the geometric phase accumulated
by the ground state and obtain its analytic expression in explicit form. We find that the adiabatic geometric phase
jumps from zero to nontrivial π at a critical value that corresponds to the normal-superradiant phase-transition
point. The magneticlike flux interpretation of the geometric phase is also discussed.
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I. INTRODUCTION

The Berry phase [1], which reveals the gauge structure
associated with a phase shift in quantum adiabatic processes,
has received renewed interest recently due to its important
applications in condensed-matter physics [2,3] and in the
implementation of quantum computing gates [4–8]. Most
of the previous works, however, focused mainly on single
quantum systems, e.g., single spin systems with parameters
such as magnetic fields varying in time slowly [9]. Recently,
geometric phase studies have been extended to composite
quantum systems, and some interesting results have been
obtained. For instance, in the composite quantum system of
a single spin interacting with a quantized field, the vacuum-
field-induced Berry phase was found [10].

In contrast to the above simple composite system, a Bose-
Einstein condensate (BEC) in an optical cavity is a complicated
composite system of greater interest. In such a system, the
interaction between bosonic particles is important and can be
adjusted precisely through the Feshbach resonance technique
[11]. In the absence of interaction, the system reduces to
the Dicke model [12], in which the critical property [13]
and scaling behavior [14] of the geometric phase have been
analyzed; in the presence of particle interaction, however,
the system becomes more complicated and calls for further
investigations. By applying the coherent-state description to
both the BEC and the cavity field, the system is cast into a
nonlinear Schrödinger equation where the nonlinearity arises
both from the atom-atom interaction and from the atom-
cavity coupling. On the other hand, studies on the geometric
properties of nonlinear systems have just begun [15–18],
and the adiabatic geometric phase in the nonlinear coupled
BEC-cavity system is of interest both in theory and in practice
because of the experimental progress in loading ultracold
atoms in tiny volume of a high-finesse microcavity [19–21].

In the present paper, we extend the geometric phase issue
to the nonlinear system of a BEC coupled to an optical cavity.
We first derive an effective Hamiltonian for the system in the
bad-cavity limit, and then explore the ground-state properties
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in the coherent-state description. The ground state exhibits
a normal-superradiant quantum phase transition (QPT) when
the atom-cavity coupling strength exceeds a critical value.
We then calculate the adiabatic geometric phase and obtain
its expression in explicit form. In particular, we find that
the geometric phase has a jump at the critical point. Our
above results for the geometric phase including the nonlinear
corrections are evidently different from those in the Dicke
model [13,14]. Finally, we interpret the geometric nature of
the quantum phase with the help of the virtual magnetic fields.

The paper is organized as follows. In Sec. II, we deduce an
effective Hamiltonian from the second-quantized Hamiltonian.
In Sec. III, we study the properties of the ground state
and the phase transition in the coherent-state description. In
Sec. IV, we calculate the ground-state geometric phase and
the corresponding magneticlike field. Section V presents our
discussion and conclusion.

II. MODEL

We consider a system of a two-level atomic BEC (e.g.,
a BEC with two different hyperfine levels |F = 2,mf = 1〉
and |F = 1,mf = −1〉 of 87Rb [22]) interacting with a single
quantized cavity mode [23,24]. In the two-mode approxima-
tion (i.e., two stationary spatial wave functions have been
assumed for the atoms), each atomic mode is associated with an
annihilation operator ĉj (j = 1,2). For convenience, we use
the Schwinger angular momentum operators: Ĵx = (ĉ†1ĉ2 +
ĉ
†
2ĉ1)/2, Ĵy = (ĉ†1ĉ2 − ĉ

†
2ĉ1)/2i, and Ĵz = (ĉ†1ĉ1 − ĉ

†
2ĉ2)/2. In

terms of these operators, the Hamiltonian of the system takes
the form (h̄ = 1 throughout the paper)

Ĥ = ωâ†â + ωaĴz + η

N
Ĵ 2

z + χ√
N

(â† + â)Ĵx, (1)

where â (â†) is the annihilation (creation) operator for the
cavity field with frequency ω, and N represents the total atom
number. The parameters ωa , η, and χ , respectively, denote the
energy difference between two atomic modes, the effective
atomic interaction strength, and the atom-cavity coupling
strength (these parameters are related to the integrals of the
equilibrium spatial wave functions [25]). It is noted that in
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the absence of atom-atom interaction (i.e., η = 0), model (1)
reduces to the Tavis-Cummings model [26], also known as the
Dicke model [12].

In order to study the adiabatic geometric phase, we
introduce a unitary transformation Û (φ) = exp(−iφĴz) to
change Hamiltonian (1) to a time-dependent form,

Ĥ (φ) = ωâ†â + ωaĴz + η

N
Ĵ 2

z

+ χ√
N

(â† + â)[cos(φ)Ĵx − sin(φ)Ĵy], (2)

where the argument φ = φ(t) is a slowly varying function of
time. In practical experiment, the φ-dependent coupling term
can be achieved by using a �-type three-level configuration
in which an external microwave field is applied to drive the
transition between two internal atomic states [27]. Here, we
are interested in the bad-cavity limit [28], where the problem
can be simplified considerably and solved analytically. In this
limit, we can treat the leakage of cavity photons by introducing
a decay rate κ with typical values ∼1 MHz, while the time scale
for the atomic transition dynamics is much longer (e.g., the
measured population oscillation frequency is below 10 Hz for
87Rb [29]). The separation of time scales allows us to assume
that the cavity field always follows the atomic dynamics
adiabatically. Under this condition, we can eliminate the cavity
mode in model (1) and obtain a Hamiltonian for the atomic
degrees of freedom alone. From i dâ

dt
= [â,Ĥ ] − iκâ = 0, we

have

â = − χ (ω + iκ)

(ω2 + κ2)
√

N
[cos(φ)Ĵx − sin(φ)Ĵy]. (3)

Combining Eqs. (2) and (3), we derive an effective Hamilto-
nian Ĥ ′ as follows:

Ĥ ′ = ωaĴz + η

N
Ĵ 2

z − 	

N
[cos(φ)Ĵx − sin(φ)Ĵy]2, (4)

where 	 = χ2ω

(ω2+κ2) describes the effective coupling between
the BEC atoms and the cavity field.

III. COHERENT-STATE DESCRIPTION AND
GROUND STATE

In the following study, we will adopt the coherent-state
treatment by replacing the operator ĉj with the corresponding
complex number

√
Ncj (j = 1,2). Then the evolution of the

system is governed by a nonlinear Schrödinger equation,

i
d|ψ〉
dt

= H |ψ〉, (5)

with the Hamiltonian

H =
(

ωa

2 + η

2 (|c1|2 − |c2|2) −	
2 (c∗

1c2eiφ + c∗
2c1)

−	
2 (c∗

1c2 + c∗
2c1e−iφ) −ωa

2 − η

2 (|c1|2 − |c2|2)

)
,

(6)

where |ψ〉 = (c1,c2)T represents the state vector satisfying the
normalized condition 〈ψ |ψ〉 = 1. Taking advantage of this
condition, we write the variables c1 and c2 as c1 = √

pei(λ+q)

and c2 = √
1 − peiλ, where p, λ, and q, respectively, denote

the population probability of the atoms in the upper mode,

the overall phase, and the relative phase between two atomic
modes. Then the state vector can be expressed as |ψ〉 =
eiλ(

√
peiq ,

√
1 − p)T . Inserting this expression into Eq. (5)

and its complex conjugate, we have

dλ

dt
= ωa

2
+ η

2
(2p − 1) + 	p cos2(φ − q), (7)

dp

dt
= 	(1 − p)p sin[2(q − φ)], (8)

dq

dt
= −ωa + η(1 − 2p) + 	(1 − 2p) cos2(q − φ). (9)

For fixed interatomic interaction η, Eqs. (8) and (9) are used to
establish a connection between the projective Hilbert space
spanned by the vector S = (p,q) and the parameter space
spanned by the vector R = (ωa,	,φ). Note that the variables p

and q form a pair of canonical variables, and the corresponding
classical Hamiltonian is given by

H= − ωa

2
(1 − 2p) + η

4
(1 − 2p)2 − 	(1 − p)p cos2(φ − q).

(10)

Here we denote the fixed points in the projective Hilbert
space by (p̄,q̄), which can be determined by the equilibrium
equations ∂H

∂p
|(p̄,q̄) = 0 and ∂H

∂q
|(p̄,q̄) = 0. Obviously, the clas-

sical system (10) has two phase-independent fixed points (to
be precise, they are two lines in the projective Hilbert space),
namely p̄ = 0 and 1. The rest of the fixed points are

(p̄,q̄) =
{(

η−ωa

2η
, φ + π

2 or φ + 3π
2

)
,(

η+	−ωa

2(η+	) , φ or φ + π
)
.

(11)

The number of fixed points depends on the parameters
η and 	 (see Fig. 1). Note that the fixed points char-
acterize the stationary points of the classical Hamiltonian
(10), and thus they correspond to the eigenstates of the
nonlinear system (5) [30]. Indeed, we can express the eigen-
value or chemical potential corresponding to the eigenstate

FIG. 1. (Color online) Fixed points of the classical Hamiltonian
H with ωa = 1 and ω/(ω2 + κ2) = 1. (a) η = 0 and (b) η = −1.5.
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FIG. 2. (Color online) The energy of the ground state and its first
and second derivatives with respect to χ . The parameters are ωa = 1
and ω/(ω2 + κ2) = 1.

|ψ̄〉 = (
√

p̄eiq̄ ,
√

1 − p̄)T as

μ = 〈ψ̄ |H |ψ̄〉
= ωa

2
(2p̄ − 1) + η

2
(1 − 2p̄)2 − 2	(1 − p̄)p̄ cos2(φ − q̄).

(12)

Substituting the concrete expression for the fixed points into
Eq. (12), we obtain the corresponding eigenvalues in explicit
form,

μ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η−ωa

2 for p̄ = 0,

η+ωa

2 for p̄ = 1,

0 for p̄ = η−ωa

2η
,

−	
2 for p̄ = η+	−ωa

2(η+	) .

(13)

For our nonlinear system (5), the chemical potential is not
equal to the energy, and the relation between them is deter-
mined by μ = H(p̄,q̄) + η

4 (1 − 2p̄)2 − 	(1 − p̄)p̄ cos2(φ −
q̄). The ground-state energy E0 and its first and second
derivatives with respect to χ have been demonstrated in Fig. 2.
We see that the second derivative of the ground-state energy
[see Fig. 2(c)] possesses a discontinuity at a critical point that
corresponds to the point of intersection of the curves for μ. The
critical point is 	c = ωa − η or χc =

√
(κ2 + ω2)(ωa − η)/ω

with ωa � η. The divergence of the derivative ∂2E0/∂χ2

implies that the system exhibits a second-order phase transition
at the critical point in the thermodynamic limit, where the
ground state changes from a normal phase (i.e., p̄ = 0) to a
superradiant phase where the atom occupation in the upper
mode acquires macroscopic values (i.e., p̄ > 0).

It is easy to find that, in the absence of cavity decay and
atomic interactions (i.e., κ = η = 0), the critical point reduces
to χc = √

ωωa , which is the critical point found in the Dicke
model [31].

In order to see the scaling behavior of the ground state in
the vicinity of the critical point, we rewrite the ground-state
solution in the superradiant phase as follows:

p̄ =
(
χ2 − χ2

c

)
ω

2[χ2ω + η(κ2 + ω2)]
. (14)

We find that, above the critical value (i.e., χ > χc), the atomic
population in the upper mode vanishes as χ − χc approaches

the critical point, and the corresponding critical exponent is
thus 1. When η = 0, the scaling behavior of the ground state
is the same as that in the Dicke model [32].

IV. GEOMETRIC PHASE AND VIRTUAL
MAGNETIC FIELD

In this section, we will calculate the geometric phase for
the ground state of the system. To this end, for simplicity,
we first treat the parameters ωa and 	 as constants, and
then a closed loop C in the parameter space can be formed
by changing the parameter φ with time from 0 to 2π . We
assume that the Hamiltonian H (φ) travels along the cyclic
path adiabatically. The dimensionless adiabatic parameter can
be defined as ε ∼ | dφ

dt
| ∼ 1

T
(where T is the period of the cyclic

evolution), which is small enough here, i.e., ε � 1. Initially,
the system is prepared in an eigenstate of H (φ), then undergoes
a cyclic adiabatic evolution along the path C, and finally, the
eigenstate will acquire a geometric phase during the adiabatic
process [33] besides the usual dynamical phase (relative to
the instantaneous energy of the system). In order to obtain the
pure geometric part, we will employ the procedure introduced
in Refs. [16,17] to separate the geometric phase from the total
phase. Since the adiabatic parameter ε is small but finite, the
system will fluctuate around the eigenstate during the adiabatic
evolution. This allows us to expand the total phase λ in a
perturbation series in the adiabatic parameter, that is,

dλ

dt
= λ0(ε0) + λ1(ε1) + O(ε2). (15)

In the adiabatic limit (i.e., ε → 0), a trip along the cyclic
path in the parameter space will take an infinitely long time
(i.e., T → ∞). The time integral of the zero-order term in
Eq. (15) gives the dynamic phase, while the time integral of the
first-order term gives the geometric phase, and the contribution
from the higher-order terms will vanish.

In the subsequent study, we will restrict our discussion to
the geometric phase for the ground state. We note that, in the
normal phase (i.e., χ < χc or 	 < 	c), the ground state (i.e.,
p̄ = 0) is independent of the system parameters. From Eq. (7),
we have

dλ

dt
= 1

2
(ωa − η) = −μ (16)

and then

λ =
∫ T

0
λ0dt = −

∫ T

0
μdt. (17)

This implies that the geometric phase vanishes.
In the superradiant phase (i.e., χ > χc or 	 > 	c), the

ground state depends on the system parameters, and we
can expand the variables as p = p̄(R) + δp(R) and q =
q̄(R) + δq(R), where (p̄,q̄) is the instantaneous ground state
corresponding to the global minimum energy. δp and δq

denote the fluctuations of the ground state induced by the
slow variation of the system, which depend on the adiabatic
parameter and are of order of ε. Substituting the above
expressions back into Eq. (7) and using Eq. (12), we have

λ0 = −μ(R), (18)

λ1 = (η + 	)δp. (19)
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Moreover, from Eqs. (9) and (11), we have

dq̄

dt
= −2(η + 	)δp + O(ε2). (20)

To deduce Eqs. (19) and (20), the equilibrium condition
∂H
∂p

|(p̄,q̄) = 0 and the relation d
dt

δq ∼ O(ε2) have been used.
Substituting Eq. (20) back into Eq. (19) and considering q̄ = φ

(or φ + π ) for the ground state, we obtain

λ1 = −1

2

dφ

dt
. (21)

Integrating this equation over the evolution period of the
system, we get the ground-state geometric phase

λG = −
∫ T

0
λ1dt = 1

2

∫ 2π

0
dφ = π. (22)

This result is very interesting because it cannot be ob-
tained directly by using Berry’s formula. Indeed, for our
nonlinear system, the total geometric phase includes two
parts: the first part is the traditional Berry phase λBP, which
is a circuit integral of the Berry connection, i.e., λBP =
−i

∫ 2π

0 〈ψ̄(R)|∇R|ψ̄(R)〉 = π
η+	−ωa

η+	
; the second part is a

nonlinear correction term, which is given by λNL = λG −
λBP = π ωa

η+	
. Our above theoretical predictions have been

verified by numerically integrating Eqs. (7)–(9) along the circle
path in the parameter space with ωa and 	 fixed, and φ varying
with a very small rate. Plotted in Fig. 3 are our numerical results
showing a good agreement with the theoretical predictions.
The inset shows the convergence of the adiabatic geometric
phase with the time duration T .

It is useful to evaluate the difference between our results and
the previous work in the Dicke model [14]. When the particle
interaction is neglected (i.e., η = 0), our model reduces to the
Dicke model. In this case, our result for the usual Berry phase
λBP = π (1 − ωa/	) is consistent with that in Ref. [14] in
the thermodynamic limit. However, a novel correction term

FIG. 3. (Color online) Numerical results and comparison with
theoretical prediction for the ground-state geometric phase. The
inset shows the convergence of the geometric phase with the
evolution period with 	 = 0.6. The parameters are ωa = 1 and
η = 0.5.

FIG. 4. (Color online) A qualitative illustration of the paths
followed by the parameter. The circular conical surface corresponds
to the critical region 	 = 	c. If the parameter follows the path CA, the
ground state will acquire a trivial zero Berry phase; while it follows
the path CB (encircling the conical surface), a nontrivial geometric
phase (i.e., λG = π ) is acquired.

λNL = πωa/	 is still found in our calculation due to the
nonlinear atom-cavity coupling.

Our above findings indicate that, in the linear system, the
high-order correction to the adiabatic approximate solution can
often be neglected. However, in the nonlinear system, since the
Hamiltonian is a function of the instantaneous states, and the
fluctuations induced by the slow change of the system can be
fed back to the Hamiltonian, the high-order correction could
be accumulated during the adiabatic evolution with an infinite
time duration and contributes a finite value to the geometric
phase in the adiabatic limit.

It is worth emphasizing that the different geometric phase
behaviors of the normal and the superradiant phases are due
to the level-crossing nature of the transition between them.
From Fig. 4, we see that the geometric phase would vanish
as long as the loop CB is pushed down into the 	 < ωa −
η (normal phase) region. In practice, we are computing the
geometric phase of two different states, which happen to be
the ground state in different regions of the phase diagram.
Thus the above “counter-topological” feature of the geometric
phase for the ground state is associated with the level-crossing
structure.

To better understand our above geometric phases, we
calculate the corresponding virtual magnetic field in the
parameter space. For convenience, we represent the three
parameters ωa,	, and φ as cylindrical coordinates of a derived
three-parameter space spanned by the vector R = (ωa,	,φ) =
(z,ρ,φ). We first define the vector potentials ABP and ANL by
the relations

λBP =
∮

ABP · dR, λNL =
∮

ANL · dR, (23)
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and then we have

ABP = η + 	 − ωa

2	(η + 	)
eφ, (24)

ANL = ωa

2	(η + 	)
eφ. (25)

The corresponding virtual magnetic fields BBP and BNL

can be defined by BBP = ∇ × ABP and BNL = ∇ × ANL. A
straightforward calculation gives

BBP = 1

2	(η + 	)
eρ +

[
ωa

2	(η + 	)2
+ πδ(	)

]
ez, (26)

BNL = − 1

2	(η + 	)
eρ − ωa

2	(η + 	)2
ez, (27)

and the total magneticlike field reads

BT = BBP + BNL = πδ(	)ez. (28)

This result implies that, in the superradiant phase, the virtual
magnetic field can be viewed as one field line along the positive
z axis and the field only distributes in the critical region, which
is denoted by a paraboloid [i.e., χc =

√
(κ2 + ω2)(ωa − η)/ω]

or a circular conical surface (i.e., 	c = ωa − η) in the
parameter space (see Fig. 4). Therefore, the flux of the virtual
magnetic field through the surface enclosed by the closed path
(i.e., the loop CB in Fig. 4) is π , which gives the physical
interpretation of our total geometric phase. In the normal
phase, there does not exist the virtual magnetic field because
the geometric phase is zero there. It is worth mentioning that,
in the superradiant phase, as long as the loop encircles the

critical region, the total geometric phase is independent both
of the shape and of the size of the loop in the parameter space.

V. CONCLUSION AND DISCUSSION

In this work, we have extended the nonlinear geometric
phase issue to the system of a BEC in an optical cavity.
First, we have derived the adiabatic geometric phase for the
ground state analytically. We find that it equals zero when the
BEC-cavity coupling strength is less than the critical value, and
it becomes π when the coupling strength exceeds this value.
The discontinuous behavior of the ground-state geometric
phase is found to be a signal of the normal-superradiant phase
transition in the system. Second, we have calculated the virtual
magnetic field corresponding to the above geometric phase
in explicit form. An effective δ-function-type magneticlike
field in the superradiant phase is shown while no virtual
magnetic field is found in the normal phase. We believe
that our present work will stimulate interest in carrying out
further investigations on the geometric issue of the model at
finite temperature to account for coupling to the environment,
dissipation, decoherence, etc., possibly adopting a master-
equation approach [34,35].
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