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We present a new topological tensor currentpebranes by making use of the
¢-mapping theory. It is shown that the current is identically conserved and behaves
as 5({;5), and every isolated zero of the vector fi@Mx) corresponds to a “mag-
netic” P-brane. Using this topological current, the generalized Nambu action for
multi p-branes is given, and the field strendihcorresponding to this topological
tensor current is obtained. It is also shown that the magnetic charges carried by
P-branes are topologically quantized and labeled by Hopf index and Brouwer de-
gree, the winding number of thé mapping. ©2000 American Institute of Phys-
ics.[S0022-24880)01707-2

[. INTRODUCTION

Extended objects witlp spatial dimensional, known as “branes,” play an essential role in
revealing the nonperturbative structure of the superstring theorieatiteories' ™ Antisym-
metric tensor gauge fields have been widely studied in the theoripsrdnes 2 In the context
of the effectiveD =10 or D=11 supergravity theory @-brane is ap-dimensional extended
source for a p+2)-form gauge field strength. It is well-known that the p+2)-form strength
F satisfies the field equation

BB 1= A1
VMF 1 p+1_J 1 P+l

wherej#1 " #p+1js a (p+ 1)-form tensor current, corresponding to the electric source, and the dual
field strength* F satisfies

Vu* FMMl"'M?ﬁl:TMl"'M?ﬁl

in which #1"#8+1 is a (p+ 1)-form tensor current, corresponding to the magnetic solirce.

The ¢-mapping theory proposed by Professor Diddiis important in studying the topologi-
cal invariant and topological structure of physics systems and has been used to study the topo-
logical current of magnetic monopoté,topological string theory® topological structure of
Gauss—Bonnet—Chern theoréfrtopological structure of the S@) Chern density? and topo-
logical structure of the London equation in superconduttowe must point out that the
¢-mapping theory is also a powerful tool to investigate the topological defects thedhand

here the vector fieldp is looked upon as the order parameters of the defects.

aAuthor to whom all correspondence should be addressed; electronic mail: Ibfu@263.net

0022-2488/2000/41(7)/4379/8/$17.00 4379 © 2000 American Institute of Physics



4380 J. Math. Phys., Vol. 41, No. 7, July 2000 Duan, Fu, and Jia

In this paper, we present a new topological tensor current of “magn@tibranes by making
use of thep-mapping theory. One shows that each isolated zero ofittienensional vector field
&(x) corresponds to p-brane =D —d— 1), and this current is proved to be the general current
density of multip-branes. Using this current, the generalized Nambu action for fxlitianes is
obtained. This topological tensor current will give rise to the inner structure of the field stifength
including the contribution of the “magneticp-branes. Finally, we show that the charges carried
by multi-p-branes are topologically quantized and labeled by the Hopf index and Brouwer degree,
the winding number of theb mapping.

II. THE TOPOLOGICAL TENSOR CURRENT OF p-BRANES

Let X be aD-dimensional smooth manifold with metric tensgy, and local coordinates
x*(w,v=0,...D—1) with x°=t as time, and leRY be an Euclidean space of dimensitD.
We consider a smooth map: X— RY, which gives ad-dimensional smooth vector field of,

= ¢3(x), a=1.2,..d. (1)

The direction unit field ofJ)(x) can be expressed as

A B e @

In the ¢-mapping theory, to extend the theory of magnetic monopdkesd the topological string
theory!® we present a new topological tensor current, with the unit “magnetic” charge
defined as

T#l---MD—d:A( _P)Td 1)'<%>6M1---MDdl’-Dd+1lLDd+2-._MD
' Vg

X €a,a, 2,0 a9 n---g, n, (3)

#(D—d+1)n H~(D-d-2)

where g is the determinant of the metric tensa,, and A(S'Y) is the area of
(d—1)-dimensional unit spherg®~1. Obviously, this “magnetic” tensor current is identically
conserved,

Vﬂjﬂr“ﬂofto, i=1,..D—d. (4)
From (2) we have
1 1
J,n _Waﬂqs +¢ &“<W)’ (5)
I (1)
el ot =~ 1o ©

Using the above expressions, the general tensor current can be rewritten as

jHrHD-d=g, Cy ay

_> €M1 MD-dMD-d+1 " HDg,
1

Jd d
Tno-0:0P o0 Iup ™2 555 553Gl Y

942
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whereCy is a constant

1

— for d>2
AT Odid—2)

Cd: 1
— for d=2,
41

andGy(||¢|)) is a generalized function
1 for d>2
PG
Ga(ll gl =1 2l

In(|g|) for d=2.

If we define a generalized Jacobian tensor as

¢
a1 'ag JH1 UMD -d| — | = gMl T HD—dMD—d+1M4D—d+2" " "HD ag ap. .. aq
€ J ( X € a#(D—d+1)¢ &“(D—d—z)(ﬁ aﬂo¢ (8)

and make use of the generalized Laplacian Green function relatignsipace

477912 N
g 9 — () for d>2
2 77 37 Gl ¢l = I'(d/2-1) (9)
278() for d=2,
we obtain as-function like tensor currefit
Trrosp-d=q S5(d)JH“D—d f i . 10
] Imd( ) Il (10

We find that]#1 #0-d#0 only when¢$=0. So, it is essential to discuss the solutions of the
equations

¢$3(x)=0, a=1,...d. (11)

Suppose that the vector fiekﬁl(x) possessekisolated zeroes, according to the deduction of
Ref. 13 and the implicit function theorefff?! when the zeroes are regular pointsgsfnapping,

i.e., the rank of the Jacobian matfi#,¢?] is d, the solution of(x) =0 can be parametrized by
x#=zutu?,...uP7Y), i=1,...), (12)

where the subscripit represents théth solution and the parametens=u(u?,...,u®~% span a
(D —d)-dimensional submanifold ok, denoted byN;, which corresponds to B-brane =D
—d—1) with spatialp-dimension and\; is its world volume. One sees that the tensor current
J#1#p-d is not vanished only on the world volume manifoltls (i=1,...)), each of which
corresponds to @-brane. Therefore, every isolated zero&(fx) on X corresponds to magnetic
P-branes. These “magnetidd-branes had been formally discussed and were not studied based on
topology theon??? Here, we must point out that tife-branes sometimes may be considered as
topological defectd!?%in this case for our theory the vector fielth(x) (a=1,...d) may be
looked upon as the generalized order paramEtéos p-branes.

In the following, we will discuss the inner structure of the topological tensor current

Jrroro-d. It can be proved that there existsdadimensional submanifoldd in X with the
parametric equation
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xtF=x*vl,... 0%, w=1,...D, (13
which is transversal to eveny; at the pointp; with

IxX* gxv
e I=1,...D—d, A=1,..d. (14

This is to say that the equatiorzZs(x)zO have isolated zero points dv.
As we have pointed in Refs. 14 and 15, the unit vector field definé#)igives a Gauss map
n:oM;—S%"1, and the generalized winding number can be given by this Gauss map

1
Wi:A( “H(d-1)! JaM_n*(Galmadnaldnaz/\'"/\dnad)
_ 1 n219, n@2---9, nad AZ/\/\d Ad
TAST I (A= 1)1 [ 2 O AgECY ’

= ! M Ade I N2Ldp N2 -9, N3dd%y (15
A( —1)(d_1)| M, ag ray Al A2 Ad ’

where JM; is the boundary of the neighborhodd; of p; on M with p;¢ dM;, MiNM;=.
Then, by duplicating the derivation ¢8) from (10), we obtain

¢

WiZjMi5(¢(v))J(;)ddv, (16)

whereJ(¢/v) is the usual Jacobian determinantdfwith respect taw,

pRE
1%

:e-Al“'Ado’bAlnalaAznaZ- “5Adnad. (17)

According to thed-function theory* and the¢-mapping theory, we know thai(qZ(v)) can be
expanded as

|
8( <Z><v>>=§l Bini &G —v(py)) (18)

on M, where the positive integes; =|W,| is called the Hopf index of the map— ¢(v) and
7=sgnQ(¢/v))|,==1 is the Brouwer degre€:'® One can find the relation between the Hopf

index B;, the Brouwer degreey;, and the winding numbew, ,
Wi=Bini, (19

One sees that Eq18) is only the expansion oB(¢(x)) on M. In order to investigate the

expansion ofé(g?s(x)) on the whole manifolK, we must expand thé-dimensionals function of
the singular point in terms of th&function on the singular submanifold, which had been given
in Ref. 24

O(N))= fN.b‘D(X—zi(u))\/&d(D*d)u, i=1,...]

in which
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OxXH gx”
), 1,J=1,...(D—d). (20)

gu:de< 9ur 30T 707
Then, from Eq.(18), and by considering the property of tidgfunction, one will obtain
5(<7>(X))=i_2ll Bimi fNif?D(X—Zi(U))\/&d(D’d’U- (21
Therefore, the general topological current of fiieranes can be expressed directly as
TM"'MDd—( Jla)J “Ho- d( )E B f O(x=2z(u))g,d® M, (22

which is a new topological current theory pfbranes based on thg-mapping theory.
If we define a Lagrangian as

1
L= \/(D d)lgM1v1 "Quo-a¥o- d)l“1 Ho-d]¥1 VD -d, (23

which is just the generalization of Nielsen’s Lagrangiarfitom the above deductions, we can
prove that

1
L=|—=]|& 24
(f)hﬁ)) (24)

Then, the action takes the form

s=f L@d0x=f S(P(x))dPx. (25)
X X

By substituting the formul#21) into (25), we obtain an important result,

| |
s=[ 3 pin | Poc2@NaA Yuex=3 pin [ Vaa® 9 29
Xi=1 N; =1 N;

|
=§1 nS, (27)

whereSizﬁifNi\/ad(D*d)u. This is just the generalized Nambu action for mkbranes P

=D-d-1), which is the straightforward generalization of Nambu action for the string world-
sheet actio® Here this action for multp-branes is obtained directly by-mapping theory, and
it is easy to see that this action is just Nambu action for multistrings vilherl =23

lll. THE GAUGE FIELD CORRESPONDING TO THE TOPOLOGICAL CURRENT

In this section, we will study the antisymmetric tensor gauge field corresponding to the
topological tensor current presented in Sec. Il. We know phiatanes naturally act as the “elec-
tric” source of a rankp+ 2 field strength

F=dA, (29)
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whereA is a (p+1)-form as the tensor gauge potential and satisfies the gauge transformation
A—A+dA,.
From Eg.(28), one has the Bianchi identity
dF=0, (29
and the “electric” current density associated with the source can be expressed as
e U S e (30)

Just as the usual Maxwell’s equation, we know that E&8)—(30) imply the presence of an
“electric” charge, i.e.,p-branes, but no “magnetic” source.

Now, let us discuss the case when there exists the “magnetic” source. For this case, one must
introduce another {+2)-form G for the magnetic source, and the field stren§thmust be
modified to

F=dA+G, (31
which is the generalized field strength including the contribution of the “magnetic” source, i.e.,
“magnetic” branesp-branes witip=D —p—4.

To obtain the explicit expression f@, let us consider that the current density corresponds to
the magnetic source which is given by

THUUERHL=V K FRRLH (32
Using (31) and(32), we obtain
- ~ 1 eMPL TP+ 1Mp+2 T MD -1
ERCREIE \/—aaM Vg % H—

It has been pointed out in Sec. Il that the current density of the “magnetic” branes is a topological
current given by Eq(3), which can be rewritten as

(33

JHrHp—d= 719m L J (€M1 MD-dHD-d+1MD-d+2 THD
A(ST T (d—1)! Jg) He-d+y
X Galaz‘"adnal(?“(o—d—z)naz. ’ 'aﬂonad)' (34)

where O—d)=p+1, i.e.,p=D~—d—1. Comparing Eq(33) to (34), we can obtain

(_ 1)(D_d)gm a a a,
Gl“’l“'/"d—lz A(§ 71)(d—1)! ealaz"'adn 1[?/”1n 2”'(9%—1” ‘ (35)
and
(-1 g
G= A( 71)(d_ jlj;' Ealaz“‘adnald na2/\' ° /\d nad- (36)

Of equal interest is the “magnetic” charge carried by the mpHiranes, which is given by

QM= fzjﬂl'-'ﬂﬁ+l\@dgﬂl...#i+l (37)



J. Math. Phys., Vol. 41, No. 7, July 2000 Topological tensor current of p-branes 4385

where 2, is a d-dimension @=p+3) hypersurface inX, while d"#1”'ﬂ5+1 is the convariant
surface elemeff of 3. From (32) and(37), it is easy to prove that
QY= f F
23

whered, is the boundary of and a @+ 2)-dimension hypersurface. Substituti(&p) into (37),
we have

|
Mg [ 5 21 pon [ P x-2(w)VadC Oudor,, (39
s X/i=1 N; A
from (8), and the relation
1 M MRy Vs V1 P 14 v,
me 1" Mp+1hl ddo-u1~~'u-,3+1:dx 1/\---Adxd,

expression(38) can be rewritten as

[
1
Q=tn| 3 | POz @NGAC N, 39
o) 51 N g
Since on the singular submanifold} we have
$*(X) |y, = B%(ZH(U),... 2P (1)) =0, (40)
this leads to
2 X
F?M(ls W . =0. (41

Using this expression, one can prove

\/a IXML GxMD—d)

=—— ¢'1lp-a) .
$-0 du Ju'l Ju (b-d)

¢

X

JH1 T HD—d

(42

Then we obtain a useful formula

d@ ¢ /g,d®~Du=/gd°x. (43
By making use of the above formula af@b), we finally get

|
QY=g.> Bin f 8P (x—z(u)d®x=gn>, Bi7i- (44)
i=1 X i=1

Equation (44) shows that theth brane carries the “magnetic” chargei“"zgmﬁi 7=9mW, ,
which is topologically quantized and characterized by Hopf indeand Brouwer degre®; , the
winding numbeW; of the ¢ mapping.

IV. CONCLUSION

In this paper thep-mapping theory is introduced to study tpebranes theory, which is a
development of our former theories of magnetic monopoles and topological strings. We present a
new topological tensor current of magnetic midtbranes and discuss the inner structure of this
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current in detail. It is shown that every isolated zero of the vector fieldle., order parameters

is just corresponding to a magnetic brapeyrane p=D —d—1). The generalized Nambu action
for multi-p-branes can be obtained directly in terms of this topological current. The topological
structure of the charges carried Pybranes shows that the magnetic charges are topologically
quantized and labeled by the Hopf index and Brouwer degree, the winding number ¢f the
mapping. The theory formulated in this paper is a new concept for topoldgribednes based on

the ¢-mapping theory.
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