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scaling laws and Berry-curvature signature
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We investigate the quantum phase transition in an ultracold atom-molecule conversion system. It is found
that the system undergoes a phase transition from a mixed atom-molecule phase to a pure molecule phase when
the energy bias exceeds a critical value. By constructing a coherent state as variational state, we get a good
approximation of the quantum ground state of the system. Using this variational state, we deduce the critical
point analytically. We then discuss the scaling laws characterizing the transition and obtain the corresponding
critical exponents. Furthermore, the Berry curvature signature of the transition is studied. In particular, we find
that the derivatives of the Berry curvature with respect to total particle number intersect at the critical point. The
underlying mechanism of this finding is discussed as well.
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I. INTRODUCTION

The quantum phase transition (QPT) describes a funda-
mental change in the properties of the ground state of a
many-body system [1,2] and originates from the singularity
of the energy spectrum [3]. It is of great interest and has
seen a significant development from both the theoretical and
experimental sides in a number of systems such as quantum
Hall systems, fractional quantum Hall liquids, and quantum
magnets [1]. In contrast with others, the cold atom systems are
of special interest and have opened up a new route to investigate
the QPT due to the advantages of the intrinsic cleanliness and
the remarkable controllability of the physical parameters.

Experimental observation of the QPT from a superfluid (SF)
to a Mott insulator (MI) in the ultracold atomic systems [4]
has stimulated more extensive theoretical and experimental
researches into this field [5,6]. The Bose-Hubbard model
(BHM) [7], as a theoretical model which embodies the essen-
tial features of the above bosonic systems, plays an important
role in studying the SF-MI phase transition [8,9]. In addition,
the coupled atom-molecule boson model [10–12] currently
attracts much theoretical attention for its application in the
creation of ultracold molecules in experiments via Feshbach
resonance (FR) [13–15] or photoassociation (PS) [16–18].
The QPT in the bosonic atom-molecule system has been
addressed from the perspective of von Neumann entanglement
entropy and fidelity [19], in contrast to the well-known BCS-
BEC crossover phenomena in the fermionic systems [20,21].
Nevertheless, the critical behaviors and scaling laws associated
with the QPT in such a bosonic atom-molecule conversion
system keep unknown and call for further investigation.

In the present paper, we focus on the critical behaviors
and scaling laws associated with the phase transition from an
atom-molecule mixture phase to a pure molecule phase. With
the help of coherent-state (CS) description, we can deduce
the explicit expression of the critical point analytically. We
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then discuss the scaling laws and obtain the critical exponents
analytically or numerically. The Berry curvature signature
associated with the phase transition is discussed as well.

The rest of the paper is organized as follows. Section II
gives the many-body coupled atom-molecule model and the
CS description. In Sec. III, we discuss the QPT in the system
and show its Berry curvature signatures. Section IV presents
our conclusion.

II. MANY-BODY MODEL AND
COHERENT-STATE DESCRIPTION

We adopt the following two-channel second-quantized
Hamiltonian to describe our bosonic atom-molecule conver-
sion system [22]:

Ĥ = −γ

2
(â†â − b̂†b̂) + ca

V
(â†â)2 + cb

V
(b̂†b̂)2

+ cab

V
â†âb̂†b̂ + g

2
√

V
(â†â†b̂ + b̂†ââ), (1)

where â and b̂ are annihilation operators for atomic mode
and molecular mode, respectively. The parameter γ denotes
the energy difference between two modes while the parameter
g characterizes the atom-molecule coupling strength. The pa-
rameter cj describes s-wave scattering, taking into account the
atom-atom (ca), molecule-molecule (cb), and atom-molecule
(cab) interactions. The Hamiltonian commutes with the total
atom number N = â†â + 2b̂†b̂ and n = N/V is the particle
density with V being the quantum volume.

For convenience, hereafter we assume that N is an even
number and thus M = N/2 denotes the maximum number of
the atomic pairs. Here we first introduce an atom-pair creation
operator by

(ĉ†)m ≡
√

m!

(2m)!
(â†)2m. (2)

Each atomic pair is restricted to occupy a Hilbert space spanned
by two orthonormal eigenvectors |1〉 and |2〉, and we denote
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the corresponding single-particle creation operators by ĉ† and
b̂†. Thus the Hilbert space of the N particle system reduces to
be M + 1 dimensional and spanned by the eigenvectors in the
Fock basis,

|m,M − m〉 = [m!(M − m)!]−1/2(ĉ†)m(b̂†)M−m|0〉, (3)

or |2m,M − m〉 = [(2m)!(M − m)!]−1/2(â†)2m(b̂†)M−m|0〉,
where m is the half population of particles in atomic mode
â and |0〉 is the vacuum state. In the above Fock-state
representation, we construct the coherent states (i.e.,
Gross-Pitaevskii states) [23] as follows:

|�CS〉 = 1√
M!

[αĉ† + βb̂†]M |0〉, (4)

where α and β are complex amplitudes which sat-
isfy the normalized condition |α|2 + |β|2 = 1. The above
coherent state (4) can be expressed as |�CS〉 =∑M

m=0

√
M!

m!(M−m)!α
mβM−m|2m,M − m〉. According to the

variational principle, by computing the expectation value
〈�CS|Ĥ |�CS〉 and minimizing it, one can determine the values
of α and β for the ground state of the system. On the
other hand, in terms of the Fock states the Hamiltonian
(1) becomes an (M + 1) × (M + 1) matrix, and then the
ground state |�GS〉 = ∑

m Cm|2m,M − m〉 can be found by
directly diagonalizing the Hamiltonian matrix numerically. We
have compared our coherent states with the quantum ground
states of the second-quantized model (1), and the results are
demonstrated in Fig. 1. For varied particle interactions, the
good agreement has been seen. Actually, the coherent state (4)
gives a well approximation of the quantum ground state in the
large particle number limit [24].

FIG. 1. (Color online) The comparison between the quantum
ground states (GS) and our coherent states (CS) for different cases:
(a) ca = cb = cab = 0; (b) ca = 0.02,cb = cab = 0; (c) ca = cab =
0,cb = 0.02; (d) ca = cb = 0,cab = 0.02. The parameters are γ =
−0.1,g = n = 1, and N = 100.

III. QUANTUM PHASE TRANSITION

A. Characteristic scaling laws

The above two-channel model (1) brings a good opportunity
to study the QPT in an ultracold atom-molecule conversion
system. The coupling terms of atoms and diatomic molecules
(i.e., â†â†b̂ + H.c.) bring a new gauge structure to the system
[25], and thus we expect that they lead to some novel critical
properties of the many-body system. In the following study
we only focus our attention on the situation that the particle
interactions are absent. For this case the analytical solution
can be obtained. We first calculate the ground states of the
system for the infinite particle number case. With the help of
the variational state (4), the expectation value of Ĥ is given by

H = lim
N→∞

〈�CS|Ĥ |�CS〉
M

= −γ

2
(2|α|2 − |β|2) + g

√
2n

2
(α∗α∗β + β∗αα), (5)

where α∗ (β∗) is the conjugate complex of the parameter α (β).
For convenience, we express the above two variables as α =
|α|eiθα and β = |β|eiθβ . Considering the conserved condition
|α|2 + |β|2 = 1, we introduce two new variables s = |β|2 and
θ = θβ − 2θα . Using these new notations, we obtain (up to a
trivial constant)

H(s,θ ) = 3
2γ s + g

√
2n(1 − s)

√
s cos θ. (6)

According to the variational principle, we minimize the
energy H(s,θ ) with s and θ as variational parameters. We then
obtain the optimum values [i.e., (s̄,θ̄ )] of parameters for the
ground state as follows:

(s̄,θ̄ ) =
⎧⎨
⎩

(1,θ̄ ), γ < γc,(
4g2n+3γ 2−γ

√
24g2n+9γ 2

12g2n
,π

)
, γ > γc,

(7)

where γc = −g
√

8n/9 is the critical point associated with the
QPT of the system. When γ > γc the system is in a mixed
atom-molecule phase and when γ < γc the system is in a pure
molecule phase. For the pure molecule phase, s̄ = 1 thus the
relative phase θ̄ cannot be defined.

Now we discuss the critical properties of the ground state.
Indeed, above the threshold (i.e., γ > γc), the molecular
fraction in the ground state s̄ can be expanded as follows:

s̄ = 2γ 2 + 3γ 2
c − 2γ

√
γ 2 + 3γ 2

c

9γ 2
c

, (8)

and the scaling behavior of the quantity s̄ for our system in the
vicinity of the critical point is then found to be

s̄(γ → γc) = 1 + γ − γc

γc

. (9)

From this equation, we see that the corresponding critical
exponent is one. It is to be mentioned that the particle
interactions do not change the above scaling behavior but
only change the value of the critical point. This is because,
in the presence of particle interactions, the critical point
becomes γc = −√

8n/9g + 2n(cab + cb)/3 and the scaling
behavior of s̄ near the critical point takes the form of
s̄(γ → γc) = f0 + f1(γ − γc) (the explicit expressions are
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FIG. 2. (Color online) The molecular fraction in the ground state
as a function of parameter γ (in units of g

√
n). Inset gives the partly

enlarged image.

generally too messy to be shown here), where f0 and f1 are two
constants which are determined by the coupling and interaction
parameters. Obviously, the corresponding critical exponent is
still one.

To gain more information associated with the quantum
phase transition in the system, we have to study the ground
states of the system and their properties in the finite particle
number cases. By diagonalizing the Hamiltonian matrix
numerically, we have obtained the ground states with different
total particle numbers. The results are shown in Fig. 2.
From Fig. 2, we see that the molecular fraction in the
ground state (i.e.,

∑
m |Cm|2 M−m

M
) increases as the ratio of the

energy difference between two modes to the coupling strength
between two modes decreases.

To get insight into the quantum phase transition in the
system, we need to analyze the energy gap between the
first excited state and the ground state. We have numerically
calculated the energy levels of the second-quantized model
(1) with different particle numbers. The results show that
the dimensionless energy gap � between the ground state
and the first excited state has a minimum near the critical
point γc = −g

√
8n/9. To study the scaling behavior of the

energy gap near the critical point, we denote the position of
the minimum gap by γN , which is a function of particle number
N . We find that as N increases the energy gap decreases and
γN approaches the value γc. The point γN can be regarded as a
pseudocritical point of the N -particle system. We particularly
evaluate the minimum value of the energy gap � for different
N , and the scaling behavior of the energy gap at the critical
point is found to be [see Fig. 3(c)]

�min(N ) 	 J (γN − γc)zν, (10)

where J = 0.405 is a constant, and zν = 3/2 denotes the
critical exponents. The value of zν is usually universal, that
is, it is independent of most of the microscopic details of
the Hamiltonian Ĥ (γ ). For our system, we can regard the
particle number N as the correlation length scale and estimate

FIG. 3. (Color online) (a) The offset between γN and γc versus
the total particle number N . (b) The minimum value of the energy gap
�min at the pseudocritical point γN versus the total particle number
N . (c) The minimum value of the energy gap � at the pseudocritical
point versus the offset between γN and γc. Solid lines are plotted for
guiding eyes, respectively, (from left to right) with the slopes being
−2/3, −1, and 3/2.

the relation between this length scale and the pseudocritical
point γN .


(γN − γc)ν 	 N−1, (11)

where ν = 3/2 is a critical exponent and 
 	 0.4335 is a
constant. The pseudocritical point changes and tends as N−2/3

toward the critical point and clearly approaches γc as N → ∞
[see Fig. 3(a)]. The ratio of Eqs. (10) and (11) gives the expo-
nent z, which can be regarded as the dynamic critical exponent.

�min(N ) 	 �N−z, (12)

where � 	 0.9427 and z = 1. This exponent is equal to
the exponent obtained in Eq. (9) for the infinite particle
number case. For our system, it is noted that the minimum
energy separation between the ground and the first excited
states decreases quite rapidly as the thermodynamical limit is
approached. In fact, the minimum gaps �min scale, typically
as N−1, tend to zero when N → ∞ [see Fig. 3(b)].

B. Berry curvature signature

The above analysis has confirmed that for our system the
process from atom-molecule mixture to pure molecule is a
quantum phase transition. In a general case, the quantum
phase transition can occur at level crossings or avoided level
crossings, and these kinds of level structures usually can be
captured by the geometric phase of the ground state [26].
In this subsection, we will explore the connection between
this quantum phase transition and the Berry curvature. To
investigate the Berry phase, one needs to rewrite the coupling
term in model (1) by introducing a parameter φ as follows [27]:

g

2
√

V
(eiφâ†â†b̂ + e−iφ b̂†ââ). (13)

In order to calculate the Berry connection of the system,
for simplicity, we fix the parameters γ and g

√
n, and

only change the parameter φ adiabatically from 0 to 2π .
We introduce the dimensionless adiabatic parameter of v ∼
| dφ

dt
| ∼ 1

T
(T is the time duration) as the measure of how

slow the parameter changes. The adiabatic parameter tends
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to zero (i.e., v → 0), which indicates the adiabatic limit.
The quantum adiabatic theorem states that, if the quantum
system is initially prepared in an eigenstate |�n(R(0))〉 with
R(t) = (γ,g

√
ne±iφ(t)), at time t = T , the system will be found

in the eigenstate |�n(R(0))〉 and a geometric phase factor
will be acquired during the adiabatic process. This phase
factor is independent of the time duration T and only related
to the geometric property of the closed path in parameter
space. At any instant, the eigenstates |�n(R)〉 of Ĥ (R) satisfy
the eigenequation Ĥ (R)|�n(R)〉 = En(R)|�n(R)〉 with energy
En(R) (n = 1,2,3, . . .). Berry showed that the geometric phase
for a specific eigenstate, such as the ground state |�GS〉 of the
system we consider here, is given by [28]

γGS(C) = −
∫∫

C

dS · B(R), (14)

where C denotes an adiabatic closed path in parameter space
and dS denotes the area element in parameter space. B(R) is
the Berry curvature which takes the form of

B(R) ≡ Im
∑

m�=GS

〈�GS|∇RĤ |�m〉〈�m|∇RĤ |�GS〉
(Em − EGS)2

. (15)

The energy denominators in Eq. (15) show that the Berry
curvature usually diverges at the point in parameter space
where energy levels are cross and may have maximum values at
avoided level crossings. Thus level crossings or avoided level
crossings, the two specific level structures related to quantum
phase transitions, are reflected in the geometry of the Hilbert
space of the system and can be captured by the geometric phase
of the ground state. For our avoided level crossings system (1),
we plot the contour lines of the Berry curvature |B| for the
ground state with different particle numbers in Fig. 4. The first
and second particle number derivatives of Berry curvatures as a
function of γ are also plotted in Fig. 5. From Fig. 5, we find that
the lines (i.e., the first derivative of the Berry curvature) with
different particle numbers cross at the point γc = −g

√
8n/9

which is the QPT point between the mixture phase and the pure
molecule phase. Moreover, the second derivative of the Berry
curvature reaches zero exactly at this point. This phenomenon
is similar to the behavior of the entanglement as a function of
system parameter for different system sizes [19]. This result is
independent of system size, which implies that, even though
a QPT is only rigorously defined in the thermodynamic limit
N → ∞, the Berry curvatures do exactly mark the changes in
the ground states of the system for a finite particle number. In
our system, the Berry curvature usually depends linearly on the

FIG. 4. Berry curvature |B| (left) and its contour map (right) for
the ground state. The parameter γ is in units of g

√
n.

FIG. 5. (Color online) The first (left column) and second (right
column) particle number derivatives of Berry curvature |B| for the
ground state versus the dimensionless parameter γ (in units of g

√
n)

with different N . The arrows denote the points of intersection.

particle number N [see Eq. (15) and Fig. 4], that is, |B| ∝ N in
the critical region. This is because the minimum energy gaps
between the first excited state and the ground state converge to
zero in the power law of 1

N
[see Fig. 3(b) and Eq. (12)]. Then

the first derivative of Berry curvature is an intensive quantity
in the finite particle number limit. Similar to other approaches
describing phase transitions, we can also extract critical points
from the Berry curvature.

IV. CONCLUSION

In this work, we have constructed the coherent states for the
ultracold atom-diatomic molecule conversion system, which
are found to be a nice approximation of the quantum ground
states of the system in the large particle number limit. Based on
the coherent states and using the variational method, we have
discussed the quantum phase transition of the system and have
obtained the critical point analytically. We find that the system
exhibits a phase transition from an atom-molecule mixture
phase to a pure molecule phase when the energy bias exceeds a
critical value. Moreover, we have studied the scaling behaviors
of the energy gap between the ground and the first excited
states in the vicinity of the critical point. The characteristic
scaling laws and the corresponding critical exponents have
been derived analytically or numerically. The Berry curvature
signature of the transition is discussed. In particular, we find
that the derivatives of the Berry curvature with respect to total
particle number intersect at the critical point. The underlying
mechanism of this finding is discussed as well.
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