
Chinese Physics B
     

GENERAL

Dynamical instability of the dark state in the
conversion of Bose—Fermi mixtures into stable
molecules
To cite this article: Meng Shao-Ying et al 2011 Chinese Phys. B 20 080309

 

View the article online for updates and enhancements.

You may also like
Strongly correlated one-dimensional
Bose–Fermi quantum mixtures: symmetry
and correlations
Jean Decamp, Johannes Jünemann,
Mathias Albert et al.

-

Heteronuclear quantum gas mixtures
C Ospelkaus and S Ospelkaus

-

Collective oscillation modes of a superfluid
Bose–Fermi mixture
Wen Wen, Ying Wang and Jianyong Wang

-

This content was downloaded from IP address 60.247.87.170 on 13/09/2022 at 06:11

https://doi.org/10.1088/1674-1056/20/8/080309
https://iopscience.iop.org/article/10.1088/1367-2630/aa94ef
https://iopscience.iop.org/article/10.1088/1367-2630/aa94ef
https://iopscience.iop.org/article/10.1088/1367-2630/aa94ef
https://iopscience.iop.org/article/10.1088/0953-4075/41/20/203001
https://iopscience.iop.org/article/10.1088/1367-2630/ab3d96
https://iopscience.iop.org/article/10.1088/1367-2630/ab3d96


Chin. Phys. B Vol. 20, No. 8 (2011) 080309

Dynamical instability of the dark state in the conversion

of Bose Fermi mixtures into stable molecules∗

Meng Shao-Ying(��=)a), Wu Wei(Ç è)a), Chen Xi-Hao(�FÓ)a),
Zhang Jing(Ü ·)a), and Fu Li-Bin(FáR)b)c)†

a)Department of Physics, Liaoning University, Shenyang 110036, China
b)Science and Technology Computation Physics Laboratory, Institute of Applied Physics and Computational Mathematics,

P. O. Box 8009, Beijing 100088, China
c)Centre for Applied Physics and Technology, Peking University, Beijing 100871, China

(Received 24 November 2010; revised manuscript received 8 April 2011)

In this paper, we investigate the dynamical instability of the dark state in the conversion of Bose–Fermi mixtures

into stable molecules through a stimulated Raman adiabatic passage aided by Feshbach resonance. We analytically

obtain the regions where the dynamical instability appears and find that such instability in the Bose–Fermi mixture

system is caused not only by bosonic interparticle interactions but also by Pauli blocking terms, which is different

from the scenario of a pure bosonic system where instability is induced by nonlinear interparticle collisions. Taking a
40K–87Rb mixture as an example, we give the unstable regions numerically.
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1. Introduction

Experiments on the Bose–Einstein condensates
(BECs) of neutral atomic gases, first realized in
1995 and different from a pure bosonic system where
the instability is induced by nonlinear interparti-
cle collisions,[1−3] have led to a profound revolu-
tion in modern physics, from low-temperature physics
to atom optics. In particular, there has much re-
cent interest in the creation of a molecular BEC via
the external field of its atomic counterpart.[4−8] The
use of a stimulated Raman adiabatic passage (STI-
RAP) by photo-association[9−14] or aided by Fesh-
bach resonance[15−17] to form ultracold molecules is
an attractive idea, due mainly to the promise of a
high yield. A key element of this scheme is to exploit
a coherent population trapping (CPT) state or dark
state,[18,19] i.e., a superposition of the free atomic and
ground molecular states that, once formed, can ef-
fectively suppress the population loss of the excited
molecular state and transfer free atoms to ground
molecules with a high conversion efficiency during the

adiabatic evolution.
However, the existence of the dark state in atom–

molecule STIRAP does not guarantee that it can al-
ways be followed adiabatically since interparticle non-
linear collisions may bring dynamical instability[20−23]

to the system, which is driven by the emergence of
the complex intrinsic frequencies of the system in
some parameter space of the interaction strength.
This fact means that there is an eigenmode growing
exponentially and that the condensate becomes un-
stable against infinitesimal perturbations, and hence
makes the real solution deviate away rapidly from
the dark state even in the adiabatic limit. There-
fore, it is crucial for the success of STIRAP to avoid
these unstable regimes when the route of adiabatic
passage is designed. So far, the dynamical instabil-
ity of the atom–molecule dark state has only been
studied in pure bosonic systems.[13,15] In recent years
much attention has been paid to converting Bose–
Fermi[24] or Fermi–Fermi[25,26] mixture atoms to their
compounded molecules. To obtain a high atom-to-
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molecule transfer efficiency, it is essential to study
the dynamical instability of atom–molecule conversion
systems consisting of fermions.

In this paper, we investigate the dynamical in-
stability of a dark state in the conversion of Bose–
Fermi mixtures into stable molecules through stim-
ulated Raman adiabatic passage aided by Feshbach
resonance.[16] Based on our theoretical analysis, the
region where the dynamical instability appears is ob-
tained analytically. We show that the dynamical in-
stability in this system is caused not only by bosonic
interparticle interactions but also by Pauli blocking
terms, which is different from the scenario of a pure
bosonic system where instability is induced by non-
linear collisions.[13,15] Moreover, taking a 40K–87Rb
mixture as an example, we give the unstable region
numerically and analyse the effects of the Pauli block-
ing terms on the unstable regime.

2. Model: CPT state

Our model is schematically outlined in Fig. 1. A
large number of two-species atoms, A and B, are ini-
tially prepared in a trapped state |a, b〉. Here we use
|a〉 and |b〉 to denote the ground states of the fermionic
and bosonic atoms in the open channel, and |m〉 and
|g〉 to represent the quasibound and ground molecular
states in the closed channel, respectively. The qua-
sibound molecular state |m〉 is coupled with |a〉 and
|b〉 through a magnetic field with coupling strength λ′

and detuning δ, while the quasibound state |m〉 and
the target state |g〉 are coupled by a laser field with
Rabi frequency Ω′ and detuning ∆. For this Bose–
Fermi mixture system, as given in Ref. [16], the energy
density corresponding to the Hamiltonian describing
the above system in the interaction picture under the
Hartree approximation is written as

E = ~
[
1
2

∑
i 6=j

χ′
ij |ψi|2 |ψj |2 + δψ∗

mψm + ∆ψ∗
gψg

+
λ′

2
(ψ∗

mψaψb + H.c.) − Ω′

2
(
ψ∗

gψm + H.c.
)

+
1
2
χ′

bb |ψb|4 +
3
5

∑
i={a,m,g}

A′
i |ψi|10/3

]
, (1)

where ψi is the complex probability amplitude of the
i-th component, the coefficients χ′

ii = 4π~ai/mi and
χ′

ij = χ′
ji = 2π~aij/mij (ai and aij are the s-wave

scattering lengths, mi is the mass of species i, and mij

is the reduced mass between states i and j) character-
ize the bosonic intrastate and interstate interaction

strengths, respectively, and the term proportional to
A′

i represents the effective self-interaction related to
fermions and is called the Pauli blocking term with
A′

i = ~2(6π2)2/3/2mi.

Fig. 1. The energy diagram of three-level atom–

molecule system involving free-quasibound–bound transi-

tions. Conversion of atoms in |a, b〉 is accomplished by

Feshbach resonance, while the coupling between the quasi-

bound molecular state |m〉 and the ground molecular state

|g〉 is provided by laser light. δ and ∆ are the one-photon

and two-photon detunings, respectively.

As in Refs. [9], [16], and [17], in order to investi-
gate the dynamics conveniently and to guarantee the
conservation of the total particle numbers for different
species, we introduce the mean-field Lagrange density
with two Lagrange multipliers ~µa and ~µb,

L = ~
∑

i

[
i~
2

(
ψ∗

i

∂ψi

∂t
− ψi

∂ψ∗
i

∂t

)]
−E − ~µaNa − ~µbNb, (2)

where Na = |ψa|2 + |ψm|2 + |ψg|2 and Nb = |ψb|2 +
|ψm|2 + |ψg|2 are the total particle numbers of the cor-
responding species, and ~µa and ~µb are identified as
the chemical potentials of the corresponding atoms.
Substituting the above mean-field Lagrangian density
into the Euler–Lagrange equation

∂L

∂ψ∗
i

− ∂ν

(
∂L

∂ (∂νψ∗
i )

)
= 0,

one can obtain a set of equations for the complex prob-
ability amplitudes (with ~ = 1),

iφ̇a =
( ∑

i 6=a

χai |φi|2 + Aa |φa|4/3 − µa

)
φa

+
λ

2
φ∗

bφm,

iφ̇b =
( ∑

i

χbi |φi|2 − µb

)
φb +

λ

2
φ∗

aφm,
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i ˙φm =
( ∑

i 6=m

χmi |φi|2 + Am |φm|4/3

+ δ − µa − µb

)
φm +

λ

2
φaφb −

Ω

2
φg,

iφ̇g =
( ∑

i 6=g

χgi |φg|2 + Ag |φg|4/3

+∆ − µa − µb

)
φg − Ω

2
φm, (3)

where φi = ψi/
√

N , χij = nχ′
ij , λi = λ′

i

√
n, Ωi = Ω′

i,
Ai = A′

in
2/3 are the renormalized quantities with the

density of the total particle number N = Na + Nb.
We now consider the stationary states. We know

that the existence of the stationary solutions of Eq. (3)
requires that ẋ = 0, x = φa, φb, φm, φg. However, it is
difficult to find the exact solutions of the above dy-
namical equations when ẋ = 0. By analogy to the
closely related models,[16,17] we assume that the sys-
tem supports a CPT state with φm = 0. Then, one
can easily obtain the following CPT solutions,

|φ0
a|2 = |φb

0|2 = −(Ω2 +
√

Ω4 + 2λ2Ω2)/(2λ2),

|φ0
g|2 = 1/2 − |φ0

a|2, (4)

with the following chemical potentials and two-photon
resonance condition:

µa = χab|φ0
b |2 + χag|φ0

g|2 + Aa|φ0
a|4/3,

µb = χab|φ0
a|2 + χbb|φ0

b |2 + χbg|φ0
g|2),

∆ = (χab − χag) |φ0
a|2 + (χbb + χab − χbg) |φ0

b |2

+ (χag + χbg) |φ0
g|2 + Aa|φ0

a|4/3 − Ag|φ0
g|4/3.(5)

In the above calculations, we take the total particle
numbers of fermionic atoms A and bosonic atoms B
to be equal. From Eq. (4), we can see that the pop-
ulation distribution of the CPT state allows all the
atoms to be converted into ground molecules as λ/Ω

changes from 0 to ∞ as long as the two-photon reso-
nance condition can be maintained dynamically. Then
when the Rabi laser is ramped up adiabatically, i.e.,
Ω slowly varies in time, the state that is initially pre-
pared as the CPT state is expected to remain close
to the instantaneous CPT state throughout the entire
process.

3. Dynamical instability of the

CPT state

The existence of the CPT state in the atom–
molecule STIRAP cannot ensure that the system can

always follow it adiabatically since bosonic interpar-
ticle mean-field interactions could cause the dynami-
cal instability that makes the quantum evolution devi-
ate from the dark state rapidly, even in the adiabatic
evolution.[15] Therefore, it is important to avoid the
occurrence of the dynamical instability of the CPT
state for the success of the STIRAP. For this pur-
pose, we now investigate the dynamical instability
of the dark state by casting the model into an ef-
fective classical one and analysing the eigenvalues of
the Hamiltonian–Jacobi matrix obtained by lineariz-
ing the equations of motion around the fixed point
corresponding to the CPT state.[27−30]

Equations (3) are equivalent to the Hamiltonian
equations of motion of the effective canonical classical
Hamiltonian

K = χab(x2
a + y2

a)(x2
b + y2

b )

+χam(x2
a + y2

a)(x2
m + y2

m)

+χag(x2
a + y2

a)(x2
g + y2

g)

+χbm(x2
b + y2

b )(x2
m + y2

m)

+χbg(x2
b + y2

b )(x2
g + y2

g)

+χmg(x2
m + y2

m)(x2
g + y2

g)

+
1
2
χbb(x4

b + 2x2
by

2
b + y4

b ) − Ω (xmxg + ymyg)

+λ [xm(xaxb − yayb) + ym(xayb + xbya)]

+ δ(x2
m + y2

m) + ∆(x2
g + y2

g) +
3
5
Aa

(
x2

a + y2
a

)5/3

+
3
5

[
Am

(
x2

m + y2
m

)5/3
+ Ag

(
x2

g + y2
g

)5/3
]

−µa

(
x2

a + y2
a + x2

m + y2
m + x2

g + y2
g

)
−µb

(
x2

b + y2
b + x2

m + y2
m + x2

g + y2
g

)
. (6)

Here, xi are canonical momenta, while yi are the coor-
dinates, being related with the old ‘variables’-φi (com-
plex numbers) as φa = xa + iya, φb = xb + iyb,
φd = xm + iym, φg = xg + iyg. They are gov-
erned by the differential equations: ẋi = ∂K/∂yi,
ẏi = −∂K/∂xi. By setting ẋi = ẏi = 0, we can obtain
the fixed point, which corresponds to the CPT state:
xa = |φ0

a|, ya = 0, xb = |φ0
b |, yb = 0, xm = 0, ym = 0,

xg = |φ0
g|, yg = 0 with the same chemical potentials

and two-photon resonance condition in Eq. (5).
The instability of the fixed points relies on the

eigenvalues of the Hamiltonian–Jacobi matrix, which
can be real, complex or purely imaginary. However,
only purely imaginary eigenvalues correspond to the
stable fixed points; others indicate unstable ones. Let
xa = z1, ya = z2, xb = z3, yb = z4, xm = z5,
ym = z6, xg = z7, yg = z8, then the elements of the
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Hamiltonian–Jacobi matrix can be written elegantly
as

Jij =
(−1)i

2
∂2K

∂zi∂zj±1

∣∣∣∣
CPT

,

where i, j are, respectively, indexes of rows and
columns, and the plus (subtraction) sign is for odd
(even) j. Substituting the CPT state into the ma-
trix elements, we find the Hamiltonian–Jacobi matrix
around this fixed point (CPT state) for the atom–
molecule conversion system,

J =



0 ρ 0 α 0 −µ 0 β

0 0 0 0 µ 0 0 0

0 α 0 ς 0 −ν 0 γ

0 0 0 0 ν 0 0 0

0 −µ 0 −ν 0 −ξ 0 ζ

µ 0 ν 0 ξ 0 −ζ 0

0 β 0 γ 0 ζ 0 %

0 0 0 0 −ζ 0 0 0


, (7)

where

α = −2χab|φ0
a||φ0

b |, β = −2χag|φ0
a||φ0

g|,
γ = −2χbg|φ0

b ||φ0
g|, µ = (λ/2)|φ0

b |,
ν = (λ/2)|φ0

a|, ζ = Ω/2,

ρ = −4
3
Aa|φ0

a|
4/3

, % = −4
3
Ag|φ0

g|
4/3

,

ς = −2χbb|φ0
b |2,

and

ξ = (χam − χab) |φ0
a|2 + (χbm − χab − χbb) |φ0

b |2

+(χmg − χag − χbg) |φ0
g|2 + δ − Aa|φ0

g|4/3.

We see that the Hamiltonian–Jacobi matrix J of
Eq. (7) is in a simple form with many zero matrix el-
ements. After calculation, we can analytically obtain
the eigenvalues other than the zero-mode frequency of
the above matrix J ,

ω1,2± = ± i√
2

√
b ±

√
b2 − c,

b = 2ξ2 + Ω2 + 2λ2|φ0
a|2,

c = Ω4 + 4
(
λ4 − 12χabξλ

2
)
|φ0

a|4

+ 4λ|φ0
a|2

[
λ

(
Ω2 − 4ξ2

)
− 6χbbλξ|φ0

b |2

+12(χag + χbg)ξΩ|φ0
g|

]
− 8ξ4 − 8Ω2ξ2

− 16Aaξλ2|φ0
a|10/3 − 16AgξΩ

2|φ0
g|4/3. (8)

Once the nonzero-frequency eigenvalues ωi become
real or complex, the fixed point corresponding to the

CPT state is dynamically unstable. From Eq. (8), we
can see that b > 0. Hence the unstable regime is given
by either c < 0 or c > b2. In the absence of both the
nonlinear collisions and the Pauli blocking terms, i.e.,
χij = 0 and Ai = 0, we find b = 2δ2 + Ω2 + 2λ2|φ0

a|2

and c = Ω4 + 4Ω2λ2|φ0
a|2 + 4λ4|φ0

a|4, which satisfy
c < b2. Therefore, the eigenvalue ωi is purely imag-
inary and implies that the CPT state of the sys-
tem is always stable. However, once either of them
are included, i.e., χij 6= 0 or Ai 6= 0, ωi may be-
come real or complex, and hence brings instability to
the population dynamics of the system. In the case
χij = 0, Ai 6= 0, the dynamical instability is induced
by the Pauli blocking terms. When Ai = 0, χij 6= 0, as
in the pure bosonic system, this instability is caused
by nonlinear collisions.[13] Therefore, we can conclude
that unlike the pure bosonic system where the instabil-
ity is only induced by interparticle interactions,[13,15]

the instability here is not only caused by bosonic non-
linear collisions but also by the fermionic Pauli block-
ing terms.

4. Numerical results

Now we consider the concrete Bose–Fermi mix-
ture system and concentrate on the dynamically un-
stable regions and the effects of the Pauli blocking
terms on the instable regimes. The fermionic atoms
A and the bosonic atoms B are taken as 40K and 87Rb,
respectively. For this Bose–Fermi mixture system, we
adopt the time-dependent Rabi frequency

Ω(t) = Ω0

[
1 − tanh

(
t − t0

τ

)]
. (9)

The s-wave scattering length for a 40K–87Rb mixture
determined through Feshbach spectroscopy is about
−185a0 with a0 being the Bohr radius.[32] The res-
onance width is about −3G.[32] Then we can obtain
the atom-to-molecule coupling strength λ′ = 9.07 ×
10−39 J. The s-wave scattering for 87Rb is about 100a0

and the condensate density n is taken as 1020 m−3. It
is then easy to obtain χab = 0.23λ, χbb = 0.0056λ,
Aa = 0.3λ, Am = Ag = 0.09λ.

Figures 2(a) and 2(b) respectively show the in-
stability diagrams and a sample of the occurrence of
instability in the population dynamics. In Fig. 2(a),
in order to see the effects of Pauli blocking terms on
the unstable regime, we have considered two different
situations with and without the Pauli blocking terms,
i.e., Ai 6= 0 and Ai = 0, where the dark gray and light
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gray areas respectively correspond to unstable regions
for the two cases Ai 6= 0 and Ai = 0. From this figure,
we see that regardless of whether the Pauli blocking
terms are considered or not, there are two unstable
regions I (I′) and II (II′) corresponding to the two
cases c < 0 or c > b2, respectively. Here I and II are
the unstable regions when Ai 6= 0, while I′ and II′

are the unstable regions when Ai = 0. Moreover, we
find that region I (I′) corresponds to the unstable re-
gion with c > b2, whose width shrinks as Ω increases,
and region II (II′) is the unstable region with c < 0,
whose width becomes fat with increasing δ. In the
absence of Pauli blocking terms, i.e., Ai = 0, the un-
stable regions (I′ and II′) are only caused by bosonic
nonlinear collisions, as in the pure bosonic system.[13]

In the presence of Pauli blocking terms, i.e., Ai 6= 0,
we find that the scopes of the two unstable areas (I

and II) are larger than that of the case Ai = 0. For
example, region II, being composed of II′ and H, is
much larger than region II′. Hence, region H is the
unstable space induced by the Pauli blocking terms.
Therefore, we can conclude that the Pauli blocking
terms enlarge the unstable areas. For the 40K–87Rb
mixture condensate system, once the parameters enter
into the unstable regions I and II, the instability could
occur and make the quantum evolution deviate from
the dark state rapidly even in the adiabatic evolution,
as is shown in Fig. 2(b), where initially the population
of the ground molecules follows the CPT solution, but
significant deviation starts to occur at about t = 1193
(with Ω = 1.05) when the system goes into the unsta-
ble regime. Therefore, for the success of STIRAP, it is
crucial to avoid these unstable regimes when designing
the route of adiabatic passage.

Fig. 2. (a) Unstable regions for 40K–87Rb mixture system for two cases (Ai = 0 and Ai 6= 0), where the dark gray areas

I and II (light gray areas I′ and II′) correspond to the unstable regions of the case Ai 6= 0 (Ai = 0), and region II is made

of II′ and H; (b) A sample of instability in the population dynamics with δ = 4, Ω0 = 200, τ = 200, t0 = 600, here the

solid line shows the CPT value of populations of the ground molecules |φ0
g |2, and the dashed line shows the population

evolution of ground-state molecules |φg(t)|2. The evolution of atoms A, atoms B, and quasibound molecules AB are not

shown. The parameters are Aa = 0.3, Am = Ag = 0.09, χab = 0.23, χbb = 0.0056, χam = χag = χbm = χbg = χmg = 0.

Time is in units of λ−1 and all other parameters are in units of λ.

5. Conclusion

In conclusion, we investigated the dynamical in-
stability of a dark state in the conversion of Bose–
Fermi mixtures into stable molecules in STIRAP aided
by Feshbach resonance. We analytically obtain the
regions for the occurrence of dynamical instability.
We find that both bosonic interparticle interactions

and fermionic Pauli blocking terms could induce dy-
namical instability in some parameter regions. This
is different from pure bosonic atom–molecule conver-
sion systems in which the dynamical instability is only
caused by nonlinear interparticle interactions. Taking
a 40K–87Rb mixture condensate system as an exam-
ple, we map out the unstable regions. Our discussions
are helpful to avoid the unstable regions and hence
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successfully implement the STIRAP process and ob-
tain high atom–molecule conversion efficiency in ex-
periment.
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