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a b s t r a c t

By employing a nonlinear three-modemodel, we study the band structure of Bose–Einstein
condensates in Fourier-Synthesized optical lattices, where the nonlinearity comes from
the mean field treatment of interaction between atoms. In linear case, we present the
band structure of the system. It is demonstrated that the energy band structure is strongly
dependent on the value of relative phase of the two lattice harmonics. In the nonlinear
case, we show that the eigenenergies as the functions of the quasi-momentum have a
novel bowl structure in the middle energy level. It is found that there exist four critical
values of interaction strength atwhich the band structurewill undergo interesting changes.
Furthermore, the stability of the eigenstate is also investigated.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, Bose–Einstein condensates (BECs) in optical lattices have attracted enormous attention both
experimentally and theoretically [1,2]. This is mainly because the lattice parameters and interaction strength can be
manipulated by using modern experimental techniques. Researchers have discovered many novel phenomena, such
as, nonlinear Landau–Zener tunneling, energetic and dynamical instability and the strongly inhibited transport of one-
dimensional BEC in optical lattices [3–12]. One of the surprising discoveries is that the interaction between particles can
influence the band structure dramatically [3,7].

Recently, ample interests have arisen in the field of transport properties of atoms and BECs subject to a Fourier-
synthesized optical lattice (FS) [13,14]. The FS optical lattice is realized by superimposing a conventional standing wave
potential of λ/2 spatial periodicity with a fourth-order multiphoton potential of λ/4 periodicity. The symmetric properties
of such lattices can be controlled by the relative phase between the two standing waves, and the transport behaviors can be
manipulated easily by the relative phase between the two spatial lattice harmonics. The transport properties of quantum
objects subject to a periodic potential are determined by the band structure. So, the study of band structures for such FS
optical lattices attracts many physicists. Here, we will focus on studying the band structure of BECs in a FS optical lattice.

In this paper, a nonlinear three-mode model is established based on the Gross–Pitaevskii (GP) equation with a FS optical
lattice, where the nonlinearity comes from the mean field treatment of the interaction between condensate atoms. With
this model, we reproduce the band structures of the lowest three levels for the linear case obtained in Ref. [13]. But in
the nonlinear case, a more complicated band structure emerges with increasing interaction strength and a bowl structure
is observed when the interaction exceeds a critical value. At the same time, several criteria are found in which the band
structure will undergo interesting changes. In addition, the stabilities of the corresponding eigenstates are also studied.
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Fig. 1. Spatial potential for a periodic atom potential for different values of the phase α between lattice harmonics: (a) α = 0, (b) α = π/2 (solid line)
and α = −π/2 (dashed line), (c) α = π . We have set V1 = 2, V2 = 0.6.

This paper is organized as follows. In Section 2, we obtain a dynamical equation describing the energy band properties
of BEC in a FS optical lattice with three-mode approximation. In Section 3, the band structure of the periodic potential
was derived by solving the eigenvalue equation of the system. There exists very particularly the energy band structure at
the first Brillouin zone. Here, the main results and discussions are presented. In Section 4, we investigate the stability of the
condensate by the Jacobian of the classical Hamiltonian. The summary and conclusion of ourwork are presented in Section 5.

2. Governing equations and three-mode approximations

We focus our attention on the situation that BEC is loaded into a one dimensional Fourier-synthesized optical lattices
where the motion in perpendicular directions is confined. Here, the FS optical lattices are given by

V (x) = V1 cos(2k0x)+ V2 cos(4k0x + α) (1)

where V1 and V2 denote the potential depths of two lattice harmonics respectively, k0 is the wave number of the laser
light which is used to generate the optical lattice, and α is the relative phase of two lattices. The shape and symmetry of
the lattice depend on the relative phase of the two lattices, which is shown in Fig. 1. It is obvious that the lattice potential
resembles a periodic sequence of hills for α = 0 [Fig. 1(a)], the situation of spatial lattice potentials with the sawtooth-like
structures are shown in Fig. 1(b) for α = ±π/2, and an array of potential dimples in the spatial lattice structure for α = π
[Fig. 1(c)]. The values of the relative phase impact greatly on the band structure of the system which can be seen from the
latter calculation. In the mean-field approximation, the dynamics of BEC can be modeled by the 1D-GP (Gross–Pitaevskii)
equation in the comoving frame of the lattice,

ih̄
∂ψ

∂t
= −

h̄2

2m
∂2

∂x2
ψ + V1 cos(2k0x)ψ + V2 cos(4k0x + α)ψ +

4π h̄2 as
m

|ψ |
2ψ (2)

where ψ is the wave function of the condensate, m is the mass of atoms, as is the two-body s-wave scattering length, k0
is the wave number of the laser light which is used to generate the optical lattice. The first Brillouin zone is [−k0, k0]. For
convenience, we cast Eq. (2) into the dimensionless form

i
∂ψ

∂t
= −

1
2
∂2

∂x2
ψ + v1 cos(x)ψ + v2 cos(2x + α)ψ + c|ψ |

2ψ. (3)

The dimensionless variables are scaled as,

x ∼ 2k0x, ψ ∼
ψ

√
n0
, t ∼

4h̄
m

k20t,

where the variable are scaled as

vi =
mVi

4 h̄2 k20
, c =

πn0as
k20

.

Here, n0 is the average density of the BEC, vi represents the strength of the potential and c denotes the atomic interaction.
In our following discussions, we focus on the case of repulsive interaction between atoms. i.e. c > 0.

We consider following three-state model to describe the band structure of the system

ψ = al(t)ei(k−1)x
+ a0(t)eikx + ar(t)ei(k+1)x

where the total probability |al|2 + |a0|2 + |ar |2 = 1, h̄k is the quasi-momentum. As shown in Refs. [14,15], the three-mode
approximation can give an exact solution to the GP equation at the first Brillouin and qualitatively reproduces the behavior
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of the asymptotic time-averaged current. Further the three-mode approximation is valid for the lower energy state. We are
interested in discussing the lower energy band near the first Brillouin zone. So the three-mode approximation should be a
good approximation because of its clear physical meaning and trustworthyness [13]. Substituting this wave function into
Eq. (3) and performing spatial integrals, we get

i
d
dt

al
a0
ar


= H

al
a0
ar


, (4)

where

H1 =



(k − 1)2

2
+ c(2 − |al|2)

v1

2
+ ca0a∗

r
v2

2
e−iα

v1

2
+ cara∗

0
k2

2
+ c(2 − |a0|2)

v1

2
+ cala∗

0

v2

2
eiα

v1

2
+ ca0a∗

l
(k + 1)2

2
+ c(2 − |ar |2)

 . (5)

Here, we focus on the energy band properties at the Brillouin zone edge, i.e. k = 1/2, so after the linearization of the
quadratic kinetic terms around k = 1/2 and dropping the constant energy of k2+1

2 + 2c , the Hamiltonian of Eq. (6) is

H2 =


−k − c|al|2

v1

2
+ ca0a∗

r
v2

2
e−iα

v1

2
+ cara∗

0 −
1
2

− c|a0|2
v1

2
+ cala∗

0

v2

2
eiα

v1

2
+ ca0a∗

l k − c|ar |2

 . (6)

The above Hamiltonian is distinct from that of the trimer train model [15–17] in which the off-diagonal term vanishes.
Actually, the trimer train model is a period boundary condition whereas the above model is not. This leads to very different
physics phenomena even in the linear case.

The dynamics of the above quantum system can be depicted by a classical Hamiltonian of the two-degree freedom [18].
Let us show that s1 = |al|2, s2 = |a0|2, s3 = |ar |2, θ1 = arg al − arg a0, θ2 = arg ar − arg a0, s1 + s2 + s3 = 1, we can get
the classical Hamiltonian,

H =


1
2

− k

s1 +


1
2

+ k

s2 −

1
2

−
c
2
(s21 + s22 + s23)+ υ1

√
s1s3 cos θ1

+ υ1
√
s2s3 cos θ2 + υ2

√
s1s2 cos(θ2 − θ1 − α)+ 2cs3

√
s1s2 cos(θ1 + θ2). (7)

s1, θ1 and s2, θ2 are two pairs of canonically conjugate variables of the classical Hamiltonian system governed by the
following differential equation:

ṡ1 = −
∂H
∂θ1

= υ1

s1(1 − s1 − s2) sin θ1 − υ2

√
s1s2 sin(θ2 − θ1 − α)+ 2c(1 − s1 − s2)

√
s1s2 sin(θ1 + θ2). (8)

ṡ2 = −
∂H
∂θ2

= υ1

s2(1 − s1 − s2) sin θ2 + υ2

√
s1s2 sin(θ2 − θ1 − α)+ 2c(1 − s1 − s2)

√
s1s2 sin(θ1 + θ2). (9)

θ̇1 =
∂H
∂s1

=


1
2

− k


− c(2s1 + s2 − 1)+ c

s2 − 3s1s2 − s22

√
s1s2


cos(θ1 + θ2)+ υ1 cos θ1


1 − 2s1 − s2

2
√
s1(1 − s1 − s2)


− υ1 cos θ2


s2

2
√
s1(1 − s1 − s2)


+

υ2s2
2
√
s1s2

cos(θ2 − θ1 − α) (10)

θ̇2 =
∂H
∂s2

=


1
2

+ k


− c(2s2 + s1 − 1)+ c

s1 − 3s1s2 − s21

√
s1s2


cos(θ1 + θ2)+ υ1 cos θ2


1 − 2s2 − s1

2
√
s2(1 − s1 − s2)


− υ1 cos θ1


s1

2
√
s1(1 − s1 − s2)


+

υ2s1
2
√
s1s2

cos(θ2 − θ1 − α). (11)

3. The band structure

According to Bloch’s theory, the band structure of the periodic potential is just derived by solving the eigenvalue equation.
In the following, we will discuss the energy band structure of BECs in FS optical lattices. It is easy to find, for α and −α, the
eigenvalue is same when the eigenfunctions have relations ai → a∗

i (i = l, 0, r). Hence, we only consider the case for
0 ≤ α ≤ π in the following content.
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2

Fig. 2. Band structure of two spatial lattice harmonics in the linear case c = 0 for different phase. The first column denotes the eigenenergy of
corresponding to Eq. (5), the second one is for Eq. (6) after dropping k2+1

2 + 2c . Here, we have set υ1 = 0.25, υ2 = 0.075.

3.1. Band structure of linear case

Fig. 2 shows the band structure of the spatial lattice harmonics in the linear case for differentα. The first column denotes
the eigenenergy corresponding to Eq. (5) (H1), the second column is for Eq. (6) (H2) after dropping k2+1

2 + 2c . It is found that
their levels are almost same, and the levels of the second column are shifted downward. So, in the following calculations, we
only carried out the calculations with the Hamiltonian (H2). It is clear that the gap between the first and second excited band

is strongly dependent on the value of relative phase, and the band gap is determined by an analytical expression
 υ218 + eiαυ2


which shows the two interfering contributions of the coupling Rabi frequencies arising fromdifferent lattice harmonics [13].
Our results are consistent with Ref. [13], and the only difference is potential value. Therefore, it is clear that the mean-field
three-mode model is reliable for calculation of the band structure.

3.2. The band structure in the nonlinear case with α = 0

The fixed point or the minimal energy point of the classical Hamiltonian system corresponds to the eigenstate of the
quantum system [5,19]. Deducing the analytical expression of these fixed points is difficult. However, numerically, we can
readily obtain them with the fourth-order Runge–Kutta method by setting ṡ1 = ṡ2 = θ̇1 = θ̇2 = 0 in the Eqs. (8)–(11).
We plot the eigenenergies as the function of the quasi-momentum in Fig. 3 for α = 0. They show an unusual loop structure
with increasing interaction. For a very weak interaction, the eigenenergy levels are similar to the linear case (c = 0). With
increasing nonlinearity (i.e., c = 0.25), the topological structure of the middle level (E2) changes: a small loop emerges.
When the interaction is stronger (i.e., c = 0.75), a new concave line emerges in the middle level E2 and the topological
structure of the lowest level E3 changes: two small loops appear. Additionally when c = 1, a new convex line in Fig. 3(d)
appears in E2 and the two loops of the E3 become large.When the interaction is stronger (c = 1.25), the new concave line, the
newconvex line and the loop of themiddle level formabowl structure. And two loops of the lowest level start to collide.With
further increase of interaction (c = 1.5), the bowl structure runs into the band edge and the two loops of E3 entangle each
other. However, we can still distinguish these levels by their different phases. In fact, level E1 has phases (θ1 = 0, θ2 = 0),
level E2 has phase (θ1 = π, θ2 = π ), and level labeled by E3 has phase (θ1 = π, θ2 = 0) or (θ1 = 0, θ2 = π ). This interesting
structure in a nonlinear system is very different from the behaviors of a linear system. Bloch waves at the Brillouin zone
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Fig. 3. The eigenenergy levels for different interaction strengths with fixed relative phase (α = 0). We set υ1 = 0.25, υ2 = 0.075.

Fig. 4. When k = 0, the energy levels vary with the interaction strength c. Here, we set υ1 = 0.25, υ2 = 0.075, α = 0.

edge always have zero velocity in a linear system, but in a nonlinear system it carries a nonzero velocity, as shown in Fig. 3.
The nonzero velocity carried by these waves is a manifestation of the superfluidity of BECs. For free particles, the flow eikx
is stopped completely by Bragg scattering; For the BECs, the flow is no longer stopped when the superfluidity is strong. So,
the novel band structures emerges.

The relation between the chemical potential and the above energy is

E = µ−
c
2
(|al|4 + |a0|4 + |ar |4) (12)

where µ signifies the chemical potential defined as ⟨ψ |H|ψ⟩.
From the above analysis, there exists a very interesting structure of the energy band in the position (k = 0) when we fix

the relative phase. The dependence of the energy levels on the interaction strength is exposed by Fig. 4.When the interaction
strength is less than a critical value c1 = 0.15, the level structure is similar to its linear counterpart. For c > c1, one level
marked as E2a emerges. Actually, it corresponds to the loop structure of E2 in Fig. 3(b) (c = 0.5). When the interaction
strength exceeds the second critical value c2 = 0.6, the energy level labeled by E2b emerges. It corresponds to the new
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Fig. 5. Band structure of two spatial lattice harmonics in the nonlinear case (the weak interaction) c = 0.25 for different phases α. We have set
υ1 = 0.25, υ2 = 0.075.

Fig. 6. Band structure of two spatial lattice harmonics in the nonlinear case (the strong interaction) c = 1 for different phases α. We have set
υ1 = 0.25, υ2 = 0.075.

concave line of E2 in Fig. 3(c) (c = 0.75). When the interaction strength exceeds the third critical value c3 = 0.88, one level
marked as E2c appears. It corresponds to the new convex line of E2 in Fig. 3(d) (c = 1) and has the same phases as that of E2.
For the weak interaction, the state adiabatically follows the curve in Fig. 3(a). However, in the case of strong interaction, the
adiabatic condition is violated, the atoms of lower energy band tunnel slowly to higher bands. At themoment, the tunneling
leads to the redistribution of the population located in each band. Thus, the energy curves terminate at some points in
Fig. 3(d), where one has a crossing of local minima. One minimum corresponds to the fluid moving to the right, the other
moving to the left. So the point of the higher energy branches is a local energyminimum of the system. From Ref. [20], when
the Bloch waves are energy minima of system, they represent superflow, when the Bloch wave are energy saddle points
they suffer Landau instability. So the point of the higher energy branches (E2b, E2c) is a local energy minimum and it is a
superflow. When the interaction strength exceeds the fourth critical value c4 = 1.23, two more energy levels labeled as
(E3a, E3b) emerge. They correspond to the loop structures of mutual entanglement in the lower level E3 and have the same
phases as those of E3.

3.3. Impacting of the relative phase on the band structure in the nonlinear case

We know that the band gap is strongly dependent on the value of the relative phase in the linear case, whereas, the value
of the relative phase has a great impact on the band structure in the nonlinear case.

Fig. 5 shows the band structure for different relative phase α between lattice harmonics in the nonlinear case for the
weak interaction. It is clear that the size of band gap between the first and second excited band decreases gradually when
the relative phase varies from0 toπ , and thewidth of the loop increases. The eigenvalue is the samewhen the eigenfunctions
have relations ai → a∗

i (i = l, 0, r) for α and −α. It means that the size of the band gap and the width of the loop undergo a
period changing with varying of the relative phase. Similarly, for the stronger interaction, they have an analogous situation
which is plotted in Fig. 6. In addition, the cross of the middle level has been opened when α = π .
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According to above analysis, we know that the change of the band structure is a manifestation of superfluidity, a
phenomenon that manifests itself in many related ways, including dissipationless flow, quantized vortices, reductions in
themoment of inertia, and the existence of persistent currents. A detailed discussion of this topic is given byMueller [8]. For
interacting systems in FS optical lattices, it is found that there are four different critical values of interaction strength where
the complex loop structures appear. For strongly interacting condensate, the middle bands of FS optical lattices can look
quite different than those of a sinusoidal lattice [21]. After the initial critical value of interaction strength is reached, a loop
starts to form, as shown in Fig. 3(b). When the interaction strength increases, other critical values are reached where the
width of the loop runs into the band edge. Eventually, the wave number that should be less than zero becomes imaginary
due to the form of the potential. This represents a nonphysical solution and is contrary to the assumption that the phase is
real. Therefore, the band appears as the nesting of two loops. These are shown in the middle energy of Fig. 3(e).

4. The stability of the Bloch states

The stability of Bloch states can be obtained by imposing a small perturbation on the stationary state, and to understand
how it evolves with time. The system is unstable if the small deviation gains exponentially. It is stable if it just oscillates
around the stationary state. To describe this phenomena quantitatively, we write down the wave function in the form
ψ = ψ0 + δψ and substitute it into the time-dependent Schrodinger equation

i
∂ψ

∂t
=

[
−

1
2
∂2

∂x2
+ V (x)+ c|ψ |

2
]
ψ. (13)

The equation of δψ can be easily obtained after neglecting high order terms greater than 2.

i
∂

∂t
δψ = Lδψ + cψ2

0 δψ
∗. (14)

Here, L = −
1
2
∂2

∂x2
+V (x)+ 2c|ψ0|

2
−µ,ψ0 is the stationary state andµ is corresponding chemical potential. The conjugate

expression of the above equation reads,

i
∂

∂t
δψ∗

= −Lδψ∗
− cψ∗

0
2
δψ. (15)

Rewrite them into a matrix form,

i
∂

∂t


δψ
δψ∗


=


L cψ2

0
−cψ∗

0
2

−L


δψ
δψ∗


. (16)

Since we are interested in a periodic system,ψ0 is actually the Bloch statesψk, and the perturbation can be composed with
eikx[u(x, t)eiqx + v∗(x, t)e−iqx

]. Substituting them into above equation yields

i
∂

∂t


u
v


=


L(k + q) cψ2

k
−cψ∗

k
2

−L(−k + q)


u
v


. (17)

For numerical calculations, one still need to expand u(x, t) and v(x, t) into a Fourier series. The stability of BEC in a cos-
potential has been extensively studied in Ref. [3].

HJ =



−
∂2H
∂s1∂θ1

−
∂2H
∂θ21

−
∂2H
∂s3∂θ1

−
∂2H
∂θ3∂θ1

∂2H
∂s21

∂2H
∂θ1∂s1

∂2H
∂s3∂s1

∂2H
∂θ3∂s1

−
∂2H
∂s1∂θ3

−
∂2H
∂θ1∂θ3

−
∂2H
∂s3∂θ3

−
∂2H
∂θ23

∂2H
∂s1∂s3

∂2H
∂θ1∂s3

∂2H
∂s23

∂2H
∂θ3∂s3


. (18)

Here, wemainly present the stabilities at k = 0 and k = 1/2 which are related to the lowest energy band and themiddle
energy band in the FS optical system. The stability of the corresponding eigenstates can be evaluated by the eigenvalues of
the Jacobian HJ . The eigenvalues of the Jacobian have their correspondence of the Bogoliubov excitation spectrum of BECs. A
real value indicates a stable BEC state, whereas the emergence of an imaginary value implies instability for BECs and leads to
a rapid production of the Bogoliubov quasi-particles in Ref. [4,22]. According to the above analysis, the adiabatic condition
is violated for the strong interaction. Where the system strays away from original eigenstate, it leads to a tunnel between
different eigenstates. This adiabatic condition can also be specified in terms of the Bogoliubiv spectrum. If the Bogliubov
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Fig. 7. When k = 1/2, the energy levels vary with the interaction strength c , we have set υ1 = 0.25, υ2 = 0.075, α = 0.

spectrum is real, the adiabaticity is kept; otherwise, it is broken [20]. By calculating the Jacobian matrix and making the
diagonalization, we know the states corresponding to levels E2b, E2c and E3b are unstable. It means that the Bogliubov
spectrum corresponding to levels E2b, E2c are imaginary, the adiabaticity is broken. Thus the point of the higher energy
branches (E2b, E2c) is a local energy minimum, and the branch is unstable. Similarly, energy branches corresponding to
(E2a, E2b) and (E3a, E3b) are also unstable. Additionally, the stability at k = 1/2 is shown in Fig. 7. Its analysis and explanation
are similar to those of stability at k = 1/2. Therein, levels E2a and E3a are stable, others are unstable states. By comparing
the stability at k = 0 with the stability at k = 1/2, we found that the critical value of the appearing loop structure increases
(c1 = 0.15 at k = 0, while c ′

1 = 0.25 at k = 1/2) with the increasing k value, while their stability results are consistent each
other.

5. Summary and discussion

To summarize, we have investigated the properties of BECs in FS optical lattices in the nonlinear case. We describe the
band structure in a FS atom potential realized by superimposing two lattice potentials of spatial periodicities λ/2 and
λ/4, V (x) = V1 cos(2k0x) + V2 cos(4k0x + α). The spatial lattice potential for different values of the relative phase has
different shapes. In this premise, with the mean-field theory and three-mode approximation, we obtain a dimensionless
Schrödinger equation describing the properties of BECs in FS optical lattices. By solving the eigenvalue equation of the
Hamiltonian (Eq. (5))we get the band structure for different values of the relative phaseα of the two spatial lattice harmonics
in the linear case, which are consistent with the results in Ref. [13]. And, there exists a very novel band structure with a
fixed relative phase in the nonlinear case. A bowl structure emerges when c > 0.88. At the same time, it is found that
there exist four critical values (c1 = 0.25, c2 = 0.6, c3 = 0.88, c4 = 1.23) in which the band structure undergoes
interesting changes. Besides, changing of the relative phase impacts greatly on the properties of the energy structure when
the interaction strength is set. Perhaps the change of the band structure produces the behavior of the asymptotic time-
averaged current. Furthermore, we analyze the stability of the corresponding eigenstates by the eigenvalues of the Jacobian
of the classical Hamiltonian. We hope our theoretical discussion will stimulate experiments in this direction.
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