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Abstract – We study a long-range interacting spin-1/2 system in the mean-field perspective, and
obtain an analytical expression for its Berry phase. The magnetic-like flux interpretation of the
Berry phase shows that the source and sink of the magnetic-like field are, respectively, located
at the disk-shaped level-crossing region, where the first-order quantum phase transition occurs,
and its boundary, where the continuous quantum phase transition occurs. From the asymptotic
distribution of the field at the infinity, we find that the source and sink as a whole can be seen as
a disk-shaped monopole with a negative magnetic charge. The analogues of this monopole and its
exotic field can generally exist in other interacting spin systems.

open  access Copyright c© EPLA, 2011

Introduction. – Since Berry’s pioneer work [1], vari-
ous geometric phases have been widely studied [2,3].
A classical textbook paradigm of the adiabatic geometric
phase, or the Berry phase (BP), comes from the single
spin-1/2 system. According to the quantum adiabatic
theorem [4], when a slowly rotating external magnetic field
is applied, a single spin-1/2 system, which is initially in an
energy eigenstate, will remain in this eigenstate, and thus
will evolve with the field simultaneously. After a complete
period, the system will acquire a BP. This BP can be
interpreted as either a half solid angle or the flux of a
magnetic-like field in the parameter space. In the latter
interpretation, the magnetic-like field originates from the
monopole located at the level-crossing point. For vari-
ous theoretical and practical purposes, this paradigm has
been generalized to the nonisolated spin-1/2 system [5],
the spin-1/2 system in a classical fluctuating field [6],
etc. Recently, the relation between geometric phases and
quantum phase transitions (QPTs) is proposed [7]. Since
the mean-field analysis is the most simple and effective
method to investigate phase transitions, this relation natu-
rally motivates us to generalize the paradigm to an inter-
acting spin-1/2 system in the mean-field perspective.
In this letter, we analytically calculate the BP of a

long-range interacting spin-1/2 system in the mean-field
perspective. This mean-field BP reduces to the BP of

(a)E-mail: lbfu@iapcm.ac.cn

the single spin-1/2 system when the interaction vanishes.
The magnetic-like flux interpretation of the BP shows
that the source and sink of the relevant magnetic-like
field are, respectively, located at the disk-shaped level-
crossing region, where the first-order QPT occurs, and its
boundary, where the continuous QPT occurs. Specifically,
one part of the field originates from the level-crossing
region and ends at its boundary, while the other part
comes from the infinity and ends at its boundary too.
The shape of the interface between these two parts reflects
the critical property of the system. From the asymptotic
distribution of the field at the infinity, we find that
the source and sink as a whole can be seen as a disk-
shaped monopole with a negative magnetic charge. We
emphasize that all these results generalize the above text-
book paradigm to the interacting spin-1/2 system, and
the analogues of the disk-shaped monopole and its exotic
magnetic-like field can generally exist in other interacting
spin systems.

Model. – We consider a long-range interacting spin-
1/2 system in an adjustable external magnetic field
R= (x, y, z) = (ρ cosφ, ρ sinφ, z). In appropriate units, its
Hamiltonian takes the form

H =
N∑
i=1

R ·σi+ K

N

N∑
i�=j=1

σzi σ
z
j , (1)
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where σi = (σ
x
i , σ

y
i , σ

z
i ) is the Pauli matrix vector of the

i-th spin, K is the reduced interaction constant,
and N � 1 is the spin number. Expressing the
state of the system as |Ψ〉= |ψ〉N and applying the
mean-field approximation to the Hamiltonian (1),
we obtain the mean-field Hamiltonian Hm =G ·σ,
where G=R+(0, 0,K〈ψ|σz|ψ〉). Then the Schrödinger
equation i ddt |Ψ〉=H|Ψ〉 reduces to the mean-field

Schrödinger equation i ddt |ψ〉=Hm|ψ〉. Inserting
|ψ〉= (cos α2 , sin α2 eiβ)T e−iλ into this equation yields

dα

dt
=−2ρ sin(β−φ), (2)

dβ

dt
= 2z+2K cosα− 2ρ cotα cos(β−φ), (3)

dλ

dt
= z+K cosα+ ρ tan

α

2
cos(β−φ). (4)

For a fixed K, eqs. (2) and (3) connect the projective
Hilbert space spanned by (α, β) with the parameter space
spanned by (ρ, φ, z). If we introduce the mean spin vector
s= (sx, sy, sz) = 〈ψ|σ|ψ〉= (sinα cosβ, sinα sinβ, cosα) ,
eqs. (2) and (3) can be expressed as the following compact
form:

ds

dt
= 2G× s. (5)

We now assume that the point (ᾱ, β̄) is a fixed point of
the projective Hilbert space, i.e., ddt ᾱ= 0 and

d
dt β̄ = 0. At

this point, eqs. (2) and (3), respectively, become

β̄ = φ or β̄ = φ+π, (6)

z+K cos ᾱ=±ρ cot ᾱ, (7)

where the upper sign is for β̄ = φ, and the lower sign
for β̄ = φ+π. Likewise, eq. (5) becomes Ḡ× s̄= 0,
where s̄= (s̄x, s̄y, s̄z) = (sin ᾱ cos β̄, sin ᾱ sin β̄, cos ᾱ) and
Ḡ=R+(0, 0,K cos ᾱ). Because the fixed point of the
projective Hilbert space corresponds to the eigenstate of
Hm, eqs. (6) and (7) actually determine all eigenstates
of Hm. Furthermore, from eqs. (6) and (7), we also
find that the eigenvalue corresponding to the eigenstate
|ψ̄〉= (cos ᾱ2 , sin ᾱ2 eiβ̄)T can be expressed as

µ= 〈ψ̄|Hm|ψ̄〉=± ρ

sin ᾱ
, (8)

where the sign convention is the same as in eq. (7).
When z = 0, the eigenstates and eigenvalues of Hm are

shown in table 1. Here we stress that the eigenstates |3〉
and |4〉 exist only when ρ < |K|. From table 1, we can find
the ground-state, i.e., the eigenstate with the minimum
µ. For the ferromagnetic interaction case where K < 0,
the disk-shaped region determined by z = 0 and ρ< |K|
is the level-crossing region where the eigenstates |3〉 and
|4〉 serve as the degenerate ground states and the first-
order QPT occurs [8,9]. Outside this region, the eigenstate

Table 1: Eigenvalues and eigenstates of Hm when z = 0.

Eigenstate s̄z = cos ᾱ β̄(K > 0) β̄(K < 0) µ

|1〉 0 φ φ ρ
|2〉 0 φ+π φ+π −ρ
|3〉 −√1− ρ2/K2 φ φ+π K

|4〉 √
1− ρ2/K2 φ φ+π K

|2〉 serves as the ground state instead of eigenstates |3〉
and |4〉. When ρ crosses the boundary of this region
determined by z = 0 and ρ= |K| from the outside to
the inside, s̄z of the ground state changes continuously
from zero to a nonzero value, and thus can be used
as the order parameter to indicate the continuous QPT
occurs at the boundary. Actually, similar QPTs occur
widely in interacting spin systems [8–10]. When z �= 0,
the eigenstates and eigenvalues of Hm can be numerically
obtained from eqs. (6), (7), and (8), and no other QPT
is found. In general, we can analytically prove that Hm
has two eigenstates when K2/3 < ρ2/3+ z2/3, and has four
eigenstates when K2/3 > ρ2/3+ z2/3.

Mean-field Berry phase. – Now we consider that
the external field R changes with time, and use the
dimensionless adiabatic parameter ε∼ | ddtR| to measure
its rate of change. Furthermore, we assume that ε is
small enough so that, according to the adiabatic evolution
condition in mean-field models [11], the system, which
is initially in an eigenstate of Hm, can remain in this
eigenstate, and thus can evolve with R simultaneously.
WhenR returns to its initial value, the system will acquire
a mean-field BP γ. Here we note that, becauseHm includes
α and thus is state dependent, γ cannot be expressed
in the conventional form, i.e., γ �=−i ∮

L
〈ψ̄|∇|ψ̄〉 ·dR=

1
2

∮
L
(1− cos ᾱ)dφ, where L is the evolution loop of the

system in the parameter space. To obtain the expression
for γ, we need to use the method introduced in ref. [12]
to separate the γ-related term from the expression for
d
dtλ. To proceed, we first note that, because the adiabatic
parameter ε is small but finite, the system will fluctuate
around the eigenstate during the evolution. This means
that α= ᾱ+ δα and β = β̄+ δβ, where δα∼ δβ ∼O(ε).
Then, from eqs. (4), (7), and (8), we obtain

dλ

dt
= µ+

[
µ

2 cos2(ᾱ/2)
−K
]
sin ᾱδα+O(ε2), (9)

where the zeroth-order term µ has been completely sepa-
rated out. Integrating this term over the evolution time, we
obtain the corresponding dynamical phase. Furthermore,
from eqs. (3), (7), and (8), we obtain

dβ̄

dt
=
2µ− 2K sin2 ᾱ

sin ᾱ
δα+O(ε2). (10)
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Here we note that ddtδβ ∼O(ε2). Combining eqs. (9) and
(10) yields

dλ

dt
= µ+

1

2

[
1− cos ᾱ

1− (K/µ) sin2 ᾱ
]
dβ̄

dt
+O(ε2), (11)

where the first-order term, i.e., the γ-related term, has
been completely separated out. Integrating this term
over the evolution period and using eq. (6), we find the
mean-field BP

γ =
1

2

∮
L

[
1− cos ᾱ

1− (K/µ) sin2 ᾱ
]
dφ. (12)

Since the above derivation does not involve any restric-
tions on the eigenstate and the evolution loop L, eq. (12)
is a general analytical expression for the mean-field BP of
the system. In contrast to the previous result [13], eq. (12)
includes the accumulative effect of the fluctuation during
the evolution.
When K = 0, i.e., the interaction vanishes, eq. (12)

obviously reduces to the expression for the BP of the
single spin-1/2 system. When K �= 0, the correctness of
eq. (12) can be confirmed by a numerical calculation if we
consider γ as the difference between the total phase and
the dynamical phase in the adiabatic limit. For simplicity,
we can assume that φ= 2πt/T with ρ and z fixed. Under
this assumption, the numerical calculation consists of the
following steps: i) solve β̄ and ᾱ from eqs. (6) and (7)
and substitute ᾱ into eq. (8) to obtain µ; ii) integrate
eqs. (2), (3), and (4) from 0 to T with the initial values
α0 = ᾱ , β0 = β̄ and λ0 = 0 to obtain λ; iii) compare the
result of eq. (12) with the approaching value of (λ−µT ) at
large T .
The integrand in eq. (12) diverges when

µ=K sin2 ᾱ. (13)

From eqs. (7), (8), and (13), we obtain that

K2/3 = ρ2/3+ z2/3, (14)

µ=K1/3ρ2/3, (15)

cos ᾱ=−z1/3/K1/3, (16)

where eq. (14) determines the divergence-related region
in the parameter space, eqs. (15) and (16) determine the
divergence-related µ and eigenstate as the functions of the
parameters. Here we stress that eqs. (14), (15), and (16)
apply to all eigenstates of Hm. From the previous descrip-
tion about eigenstates, we know that the divergence-
related region determined by eq. (14) is exactly the region
where the number of the eigenstates changes. This indi-
cates that the behavior of γ reflects the property of the
eigenstate faithfully.
From the derivation of eq. (12), we can see that the

BP γ is closely related to the fluctuation δα. Substituting
eqs. (6) and (13) into eq. (10), we find that, at the
divergence-related region, a slow change of φ will lead

to an infinite fluctuation δα. For the present mean-field
model, an infinite fluctuation around the ground-state
arises only when the continuous QPT occurs. Therefore,
the divergence of the ground-state BP γg can be seen
as the consequence of the quantum criticality. Here and
below, the subscript g refers to the ground state.

Magnetic-like flux interpretation. – From the form
of eq. (12), we find that the mean-field BP γ is not
proportional to any solid angle, and thus has no solid angle
interpretation. In spite of this, we can always interpret
γ as the flux of a magnetic-like field in the parameter
space as long as the field takes the appropriate form. This
magnetic-like flux interpretation actually serves as the
differential formulation for γ. In the following we perform
the interpretation of the ground-state BP γg, and reveal
the relation between this interpretation and the QPTs of
the system.
We first define the vector potentialAg satisfying

∮
L
Ag ·

dR= γg. Because β̄g = φ+π, we have

Ag =

(
1

2ρ
− cos ᾱg

2ρ+2K sin3 ᾱg

)
êφ. (17)

Here we stress thatAg is independent of the evolution loop
L. Then we define the magnetic-like field Bg satisfying
Bg =∇×Ag − δg, where δg denotes the contribution from
the Dirac string. A direct calculation gives

Bg =

(
U
∂ᾱg

∂ρ
+V

)
êz −

(
U
∂ᾱg

∂z

)
êρ, (18)

where

∂ᾱg

∂z
=

ρ cos2 ᾱg
(z+K cos ᾱg)2+Kρ sin ᾱg cos2 ᾱg

, (19)

∂ᾱg

∂ρ
=− (z+K cos ᾱg) cos

2 ᾱg

(z+K cos ᾱg)2+Kρ sin ᾱg cos2 ᾱg
, (20)

U =
3K sin2 ᾱg cos

2 ᾱg +K sin
4 ᾱg + ρ sin ᾱg

2(ρ+K sin3 ᾱg)2
, (21)

V =− K sin3 ᾱg cos ᾱg

2ρ(ρ+K sin3 ᾱg)2
. (22)

Besides, from the distribution of Ag at the large R limit,
we find that there is a Dirac string along the positive
z-axis.
Because the real antiferromagnetic ground state of the

original system cannot be described under the present
mean-field approximation, in the following we focus on
the ferromagnetic interaction case where K < 0. Without
loss of generality we take K =−1. Then the field line
distribution of Bg (see fig. 1) shows that the source and
sink of Bg are, respectively, located at the disk-shaped
level-crossing region and its boundary. Specifically, one
part of Bg originates from the level-crossing region and
ends at its boundary, while the other part comes from the
infinity and ends at its boundary too. From eq. (7) and
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Fig. 1: The field line distribution of Bg in the (x,z)-plane when
K =−1. The arrows indicate the direction of Bg.

the condition that γg = 2π or 0 with the evolution loop L
azimuthally symmetric, we find that the interface between
these two parts, which we call the flux-free surface, is
determined by ρ=

√
1− |z|(1+√|z|).

At the large R limit, the interaction between the
spins can be ignored. Then the distribution of Bg is
the field distribution of the point-like monopole with
the elementary magnetic charge (−1/2). This asymptotic
distribution indicates that the source and sink of Bg as
a whole can be seen as a disk-shaped monopole located
at the region of the QPTs. Actually, similar deformed
monopoles have been noticed recently [14]. From the
distribution of Bg near the level-crossing region, we find
that the surface-density of the magnetic charge on this
region is

σg =
1

4π(1− ρ2)3/2 , (23)

where ρ< 1. When ρ→ 1, eq. (23) gives σg ∼ (1− ρ)−Λ
with the critical exponent Λ= 3/2. The surface-density σg,
together with the total magnetic charge of the monopole,
determinesBg completely. Therefore, we can say that σg is
the central quantity in the differential formulation for γg,
and Λ is the corresponding central critical exponent. Since
the BP can provide the key ingredients of the criticality in
principle [7], it is promising and challenging to investigate
the relation between Λ and other critical exponents.
Because the ground-state is twofold degenerate on the

level-crossing region, any evolution loop L on this region
corresponds to two different γg’s. It is easy to show that
their difference ∆γg = 4πQ

L
g (modulo 2π), where Q

L
g is the

magnetic charge enclosed by L. This indicates that the
magnetic charge of the monopole originates from the phase

difference ∆γg. From eq. (23), we find that the charge
on the level-crossing region is divergent. Combining this
divergence with the distribution ofBg at the largeR limit,
we find that the negative charge on the boundary of this
region must be divergent too.

Discussion and conclusion. – From the previous
results, we can easily see that both the disk-shaped
monopole and the exotic distribution ofBg are the natural
consequences of the physical properties of the system.
These properties include i) the asymptotic behavior of
the system at the large R limit; ii) the degeneracy of
the ground state; iii) the criticality which leads to the
divergent γg. Because the similar properties exist in many
interacting spin systems, the analogues of the disk-shaped
monopole and its exotic magnetic-like field also exist
generally in these systems.
On the other hand, the structure of the monopole

and the distribution of Bg reflect the properties of the
system naturally. In particular, the shape of the flux-
free surface reflects the critical property of the system.
Roughly speaking, both the external field R and the
interaction between the spins affect γg, and the flux-free
surface is located at the region where their effects on
γg cancel each other out. In essence, the criticality of
the system is exactly the consequence of the competition
between R and the interaction. Therefore, the shape of
the flux-free surface can reflect the critical property of
the system. This provides the possibility to measure the
criticality by the BP without having the system undergo
the QPT.
In conclusion, we have studied a long-range inter-

acting spin-1/2 system in the mean-field perspective,
and obtained an analytical expression for its BP. The
magnetic-like flux interpretation of the BP gives an exotic
magnetic-like field and a relevant disk-shaped monopole,
which are closely related to the QPTs of the system. We
emphasize that this result visualizes the relation between
the BP and the QPTs, and may have many prospective
applications in the study of QPTs.
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