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We investigate the Berry phase of adiabatic quantum evolution in
the atom–molecule conversion system that is governed by a nonlin-
ear Schrödinger equation. We find that the Berry phase consists of
two parts: the usual Berry connection term and a novel term from
the nonlinearity brought forth by the atom–molecule coupling.
The total geometric phase can be still viewed as the flux of the mag-
netic field of a monopole through the surface enclosed by a closed
path in parameter space. The charge of the monopole, however, is
found to be one third of the elementary charge of the usual quantized
monopole. We also derive the classical Hannay angle of a geometric
nature associated with the adiabatic evolution. It exactly equals
minus Berry phase, indicating a novel connection between Berry
phase and Hannay angle in contrast to the usual derivative form.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Berry phase [1], which reveals the gauge structure associated with a phase shift in adiabatic pro-
cesses in quantum mechanics, has attracted great interest in physics [2]. This quantal phase is con-
nected with a classical angle, namely, the Hannay angle [3], by a simple and elegant expression in
the semiclassical limit [4]. A vast amount of literature has been devoted to the generalization and
application of the geometric structures and their relationship in various physical systems [5–10].

Association of ultracold atoms into molecules is currently a topic of much experimental and theo-
retical interest [11] with important applications ranging from the search for the permanent electric
dipole moment [12] to BCS-BEC (Bose–Einstein condensate) crossover physics [13]. Through Feshbach
c. All rights reserved.
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resonance [14] or photoassociation [15], a pair of atoms can bond into a molecule. The atom–molecule
conversion under mean field treatment is governed by a nonlinear Schrödinger equation, in which the
nonlinearity is from the fact that two or more atoms are needed to form one molecule [16]. Since the
adiabatic manipulation is an optimal way to yield high conversion efficiency, great efforts and big pro-
gress have been made towards the adiabatic condition [17] and adiabaticity [18] of the nonlinear
quantum evolution. Nevertheless, the knowledge of the Berry phase for the adiabatic evolution in such
nonlinear system is very limited. This system not only lacks superposition principle due to the pres-
ence of nonlinearity [19] but also has no Uð1Þ-invariance because the chemical potentials of atomic
component and molecular component are not identical [20].

In this paper, we study the adiabatic geometric phase in the atom–molecule conversion systems
and derive the explicit expression of the Berry phase analytically. We find strikingly that the circuit
integral of Berry connection of the instantaneous eigenstate alone cannot account for the geometric
phase, while a novel term due to the nonlinearity brought forth by the atom–molecule coupling
emerges. The above analytical finding has been verified by our numerical simulation. On the other
hand, we recognize that the although above system admits the quantal equations of motion, it appears
formally to have classical structure if we regard the total phase and total particle number as a pair of
canonical conjugate variables. We thus could exploit this particular feature to construct a canonical
transformation to action-angle variables and derive the Hannay angle analytically. We find the Han-
nay angle in the system exactly equals minus Berry phase. This result indicates a novel connection be-
tween Berry phase and Hannay angle in contrast to the usual derivative form [4]. The geometric phase
can be interpreted as a flux of a magnetic field of a monopole through the surface enclosed by the
closed path in parameter space. The charge of the monopole is found to be one third of the elementary
charge of the usual quantized monopole.

Our paper is organized as follows. In Section 2, we present our atom–molecule conversion model
and derive the explicit expression of the Berry phase associated with the adiabatic evolution of eigen-
states. In Section 3, we give an interpretation of geometric phase as a flux of a magnetic field of a frac-
tional monopole. In Section 4, we investigate the Hannay angle of the adiabatic evolution. Section 5 is
our conclusion.

2. Berry phase in an atom–molecule conversion system

For simplicity, we consider the following two-mode model, i.e., atom–diatomic molecule conver-
sion system, as an example to demonstrate our theory. The following deduction, in principle, can be
extended to the case of multiple modes and multi-atomic molecule formation. The energy of the sys-
tem reads
H ¼ R cos h
2

ŵy1ŵ1 � ŵy2ŵ2

� �
þ

ffiffiffi
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where ŵ ¼ ŵ1; ŵ2
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and ŵy ¼ ŵy1; ŵ

y
2

� �
are the annihilation and creation operators for atom and molecule,

respectively. They obey the commutation relations ŵi; ŵ
y
i

h i
¼ dij for bosons. R ¼ ðR sin h cos u;

R sin h sin u;R cos hÞ is a vector in 3D parameter space. The terms ŵy1ŵ
y
1ŵ2 þ h:c: describe the coupling be-

tween atom pairs and diatomic molecules, which brings a new gauge structure to the system. With these
terms, the system is invariant under the transformation
UðgÞ ¼ eiHðgÞ; HðgÞ ¼
g 0
0 2g

� �
: ð2Þ
Under the mean field limit, i.e., replacing ŵ and ŵy by complex numbers w and w� that correspond to
coherent states of those operators, we rewrite Hðw;w�; RÞ ¼

P
i;jw
�
i Tijðw;w�; RÞwj, where the matrix ele-

ments T11 ¼ �T22 ¼ R cos h
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with
Hðw;w�; RÞ ¼
R cos h

2
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The projective Hilbert space is spanned by the vector na ¼ 2
ffiffiffi
2
p

Re w�1
� �2

w2

h i
;2
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p

Im w�1
� �2

w2

� �
;

�
jw1j

2 � 2jw2j
2Þ. Obviously, every point in this space corresponds to a class of quantum states among

which the states are only different in co-diagonal total phases (see Eq. (2)). With the normalization
condition jw1j2 þ 2jw2j2 ¼ 1, one can find that the projection space is a ‘tear-drop’ shaped surface [21].

We notice that even though the matrix in (4) is not conjugate symmetric, the original system rep-
resented by Eq. (1) is hermitian and the total system energy is bound. The analogous nonlinear Schrö-
dinger equations have been widely applied in Feshbach molecular formation [17,22].

The eigenstates of the above system �/ðRÞ ¼ ð/1;/2Þ satisfies the following eigenequations
Hð/;/�; RÞ /1

/2

 !
¼

l 0
0 2l

� �
/1

/2

 !
: ð5Þ
The above eigenequations define the eigenfunction �/ and the eigenvalue (or chemical potential) l
that are functions of the adiabatic parameter R. The eigenequations are solved and the eigenfunctions
are obtained as follows,
/�2 ¼
ð� cos h� 1Þffiffiffi

6
p

sin h
; /�1 ¼ eiu=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 /�2

		 		2q
; ð6Þ
with the eigenvalue (or chemical potential for atom) l� ¼ R
4 ðcos h� 1Þ.

Now, let us suppose the parameter vector RðtÞ varies slowly in a time interval t 2 ½0; T�. For simplic-
ity, we fix R; h and change u slowly from 0 to 2p, forming a loop in the parameter space, i.e.,
Rð0Þ ¼ RðTÞ. The sweep rate a ¼ 2p

T measures how slow the system evolves, and a! 0 indicates the
adiabatic limit. Initially the system populates in an eigenstate, i.e., wð0Þ ¼ �/ðRð0ÞÞ, and it will keep
close to the eigenstate during an adiabatic process, guaranteed by the adiabatic theory [17,23]. That
is, kwðtÞ � �/ðRðtÞÞk � 1� jhwðtÞj�/ðRðtÞij2 � a2. It indicates that jhwðTÞjwð0Þij2 ¼ 1 in the adiabatic limit
a! 0. Moreover, a total phase is acquired over the course of the cycle. As we show below, the total
phase (for the atomic component) argðhw1ðTÞjw1ð0ÞiÞ can be decomposed into two parts in the adia-
batic limit, i.e., lima!0 argðhw1ðTÞjw1ð0ÞiÞ ¼ �ðcd þ cgÞ. The former has dynamical property and can
be expressed as the time integral of the chemical potential for atom; the latter is of geometric property
and its explicit expression will be derived analytically and shown to be dramatically different from the
usual Berry phase formula.

The Eq. (3) and its conjugate construct a canonical structure of classical dynamics with the energy
Hðw;w�; RÞ as classical Hamiltonian and ðw; iw�Þ as a canonical variable pair. The gauge symmetry of H
given by (2) implies that the total atom number is conserved jw1j2 þ 2jw2j2 ¼ 1 and the dynamics of
the overall phase can be separated from the rest of the degrees of freedom [24]. For simplicity and
without losing generality, we denote k ¼ arg w1 and set total phase as k for atomic components and
2k for molecular components, respectively. The other variables form a close set of Hamiltonian
dynamics with the canonical pair defined as q ¼ � arg w2 þ 2 arg w1 and p ¼ jw2j

2. From (3) and its
complex conjugate, we get
dk
dt
¼ p

dq
dt
�Hðp; qÞ �Kðp; qÞ; ð7Þ
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; ð8Þ
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The fixed point of the above Hamiltonian can be derived by setting the right-hand functions equal
to zero in Eq. (8). We readily obtain p ¼ j/�2 j

2 and q ¼ u. These fixed points are local energy minima of
system and therefore correspond to the eigenstates defined by (5).

For a linear quantum case, both matrix fHijg and fTijg are the functions of the parameter R only, so
that the last term in Eq. (7) vanishes, i.e., Kðp; qÞ ¼ 0. The second term in the right-hand of Eq. (7) is the
energy, whose time integral gives so-called dynamical phase. The time integral of the first term is the
Aharonov–Anandan phase for a cyclic quantum evolution [25]. The above observation is readily ex-
tended to the adiabatic evolution of a quantum eigenstate, because the adiabatic theorem of quantum
mechanics dictates that an initial nondegenerate eigenstate remains to be an instantaneous eigenstate
and the evolution will be cyclic when the parameters move slowly in a circuit. In this case, the second
term is the eigenenergy and the first term is just the Berry connection, i.e., i < �/ðRÞjrj�/ðRÞ >. Then the
Berry phase equals the circuit integral of the Berry connection.

However, for our atom–molecule system, the contribution of the last term in (7) should be taken
into account. Notice that the chemical potential is usually not identical to the energy while the dy-
namic phase should be the time integral of the chemical potential, and we need to evaluate the follow-
ing quantity in adiabatic limit,
Nðp; q; RÞ ¼ Hðp; qÞ þKðp; qÞ � lðRÞ: ð9Þ
We denote p ¼ pðRÞ þ dp and q ¼ qðRÞ þ dq . Here pðRÞ and qðRÞ are the fixed points corresponding
to the eigenstates defined by (5). The vector ðdp; dqÞ represents the correction to the adiabatic eigen-
states in the order of a [26]. As will be shown, ðdp; dqÞ contains some secular terms in addition to the
rapid oscillations. These secular terms will be accumulated in the nonlinear adiabatic evolution and
contribute to the geometric phase.

We expand the quantity Nðp; q; RÞ around the fixed point,
Nðp; q; RÞ ¼
ffiffiffi
3
8

r
R sin h

2
ð1� 6�pÞ

2
ffiffiffi
�p
p dpþ oðdq2; dp2Þ: ð10Þ
Here we use the relations: Hð�p; �qÞ þKð�p; �qÞ ¼ lðRÞ; @Hðp; qÞ=@pj�p;�q ¼ @Hðp; qÞ=@qj�p;�q ¼ 0, and
@K
@q jð�p;�qÞ ¼ 0.

On the other hand, the ðdp; dqÞ can be evaluated from the following Hamiltonian equations,
_q ¼ @2H
@p@p

					
ð�p;�qÞ
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@p@q

					
ð�p;�qÞ

dqþ oðdq2; dp2Þ; ð11Þ
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2H
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Omitting the higher order terms and, keeping the secular terms by average over the fast oscilla-

tions, we obtain ðhdpi; hdqiÞT ¼ X�1 dp
dR

_R; dq
dR

_R
� �T

with the matrix X ¼
ffiffi
8
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_R. Therefore, by substituting the result into (10), and from (7), we get the

total phase acquired by the eigenstate in adiabatic limit, k ¼ �ðcd þ cgÞ, with cd ¼
R
ldt and the geo-

metric phase,
cg ¼
I

pduþ
I ð1� 6pÞp

1þ 6p
du; ð13Þ

¼ 1
6

I
1� cos hð Þdu: ð14Þ
In contrast to previous works [27], the adiabatic geometric phase in the atom–molecule system is
dramatically modified. The first term in the right-hand of Eq. (13) is the usual expression of the Berry
phase that can be rewritten as the circuit integral of the Berry connection i < �/ðRÞjrj�/ðRÞ >. The sec-



Fig. 1. The numerical results and comparison with theoretical predictions for the adiabatic geometric phase of eigenstate of lþ ,
in which the sweeping rate is a ¼ 0:0001. The insert figure shows convergence of geometric phase with sweeping rate.
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ond novel term indicates that, the high-order correction to adiabatic approximate solution that is neg-
ligible in linear case, could be accumulated in the nonlinear adiabatic evolution with an infinite time
duration in adiabatic limit and contributes a finite phase with geometric nature.

The above theoretical formulation on the Berry phase has been verified numerically by directly
integrating the Schrödinger equation along the circle path in parameter space with R and h fixed,
and u varying with a very small sweeping rate a, i.e., u ¼ at. In Fig. 1, we show the numerical results
and compare them with theoretical predictions for the adiabatic geometric phase of eigenstate of lþ,
in which the sweeping rate is a ¼ 0:0001. The insert figure shows the convergence of the adiabatic
geometric phase with the sweeping rates.

3. Geometric meaning of the nonlinear Berry phase: fractional monopole

For the linear systems, the Berry phase has been interpreted as the flux of a magnetic field of a
quantized monopole through the surface enclosed by the loop in parameter space. This is demon-
strated by the spin-half system, i.e., H ¼ � 1

2 R 	 r where r denotes pauli matrices and
R ¼ ðR sin h cos /;R sin h sin /;R cos hÞ is a vector in the 3-D parameter space. The eigenvalues of the
system are E� ¼ � R

2, and their eigenstates are jw�i ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� cos hÞ=2

p
e�iu=2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� cos hÞ=2

p
eiu=2

� �T
,

respectively. The Berry phase equals the circuit integral of the Berry connection ihwðRÞjrjwðRÞi, can
be interpreted as the flux of the magnetic field of a virtual monopole with the charge g0 ¼ 1

2. In general,
the degeneracies of the spectrum in parameter space are the singularities of the virtual magnetic field,
and therefore play an important role in connexion with the geometric phase. Each degeneracy can be
seen as a charge distribution located at the contact point between energy surfaces. Because the eigen-
states are smooth and single valued outside the degeneracies, the total charge of the distribution, i.e.,
the monopole charge, is necessarily an integer multiple of the elementary charge g0 ¼ 1=2. The non-
elementary monopoles with integer multiples of g0 have been found in case of light propagating and in
condensed matter physics [28,29]. The mechanism for the production of monopole charges larger than
the elementary g0 is due to constraints that act on the system [30].

For our nonlinear system, when parameters R ¼ ðR; h;uÞ are considered as spherical coordinates of
a vector in a 3-D space, and then from (14) we get the vector potential,
A ¼ 1
6
ð1� cos hÞ

R sin h
beu: ð15Þ
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Here, for convenience we only consider the case for lþ. Hence, the Berry phase of atom–molecule
conversion system can be interpreted as the flux of a magnetic field of a virtual monopole through the
surface enclosed by the closed path in parameter space (see in Fig. 2(a0)), B ¼ r
 Aspin ¼ g R

R3. Here, the
monopole charge g ¼ 1

3 g0, the fractional of the elementary charge of quantized monopole.
The fractional charge of monopole of this system is due to the symmetry breaking of the parameter

space by the boundary. From (6), we find that jw2j increases with h monotonously. When h ¼ 2p=3,
jw2j ¼ 1=

ffiffiffi
2
p

reaches its extreme value (since jw1j2 þ 2jw2j2 ¼ 1Þ. It implies that there is no eigenstate
in the regime h > 2p=3, i.e., the Berry sphere of this system is a deformed sphere with a forbidden cone
bounded by h ¼ 2p=3. We illustrate this structure in Fig. 2(a0). The strange string lies on the negative
Z-axis i.e., h ¼ p.

4. Hannay angle in atom–molecule conversion system

Extending to consider the classical counterpart, i.e., Hannay angle, of the above new form of Berry
phase is of interest. Note that although the above system admits the quantal equations of motion, it
appears formally to have classical structure if we regard the total phase and total particle number as a
pair of canonical conjugate variables. We thus could exploit this particular feature to construct a
canonical transformation to action-angle variables and derive the Hannay angle, i.e., the geometric
Fig. 2. The parameter space (a) and Bloch sphere (b) for a spin-half particle in magnetic field. (a0) and (b0) are the parameter
space and Bloch sphere for the atom–molecule conversion system, respectively. The parameters change adiabatically along a
close path shown as the green circles in the parameter spaces or Berry spheres. Accordingly, the eigenstate will evolve and form
a close path schematically plotted as green circles on the Bloch spheres. The gray cone in (a0) is the boundary for which
h ¼ 2p=3:, inside which, i.e., h > 2p=3, no eigenstate exists. See text for details. (For interpretation of color mentioned in this
figure the reader is referred to the web version of the article.)
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part involved in the angular evolution analytically. The dynamics of quantum system governed by Eq.
(3) can be formally described by a classical system with the total energy as its classical Hamiltonian.
For the two-mode model, it reads
H ¼ A jw1j
2 � jw2j

2
� �

þ Bjw1j
2jw2j cos f2 � 2n1 �uð Þ; ð16Þ
in which nj ¼ argðwjÞ;A ¼ R cos h
2 and B ¼

ffiffi
3
8

q
R sin h. By introducing new canonical variables

p1 ¼ jw1j
2 þ 2jw2j

2
; q1 ¼ n1; p2 ¼ jw2j

2, and q2 ¼ n2 � 2n1, we obtain
Hðp1; p2; q2Þ ¼ A p1 � 3p2ð Þ þ Bðp1 � 2p2Þ
ffiffiffiffiffi
p2
p

cos q2 �uð Þ: ð17Þ
To calculate the Hannay angle one needs to find the canonical transformation to the action-angle
variables, and rewrite the Hamiltonian in terms of them. It is much difficult to do this directly from the
above Hamiltonian. Here, we only focus on the Hannay angle of eigenstate, therefore we can simplify
the Hamiltonian by expanding it around the eigenstate.

By denoting eigenstates with new variables as ðp2; q2Þ and p1 ¼ 1, it satisfies
@Hð1; p2; q2Þ
@p2

				
p2 ;q2

¼ @Hð1; p2; q2Þ
@q2

				
p2 ;q2

¼ 0: ð18Þ
We then expand the Hamiltonian around ðp2; q2Þ, and only keep the second orders
Hdðp1; p2; q2Þ ¼ H0ðp1Þ þ Tðp1Þdpþ Gðp1Þdp2 þ Fðp1Þdq2; ð19Þ
where dp ¼ p2 � p2; dp ¼ q2 �u (here we have used the relation q2 ¼ uÞ, H0ðp1Þ ¼ Hðp1; p2;uÞ ¼
Aðp1 � 3p2Þ þ Bðp1 � 2p2Þ

ffiffiffiffiffi
p2

p
,

Tðp1Þ ¼
@Hðp1; p2; q2Þ

@p2

				
p2 ;q2

¼ Bðp1 � 1Þ=2
ffiffiffiffiffi
p2

p
; ð20Þ

Gðp1Þ ¼
@2Hðp1; p2; q2Þ

@p2
2

					
p2 ;q2

¼ �Bðp1 þ 6p2Þ=8ðp2Þ3=2
; ð21Þ
and
Fðp1Þ ¼
@2Hðp1; p2; q2Þ

@q2
2

					
p2 ;q2

¼ �Bðp1 � 2p2Þ=2
ffiffiffiffiffi
p2

p
: ð22Þ
Considering E ¼ Hdðp1; p2; q2Þ to be a constant, we have
p1 ¼ !ðdp; dq; EÞ ¼ l; ð23Þ
where !ðdp; dq; EÞ ¼ 3A
ffiffiffiffi
p2

p
dpþAdp2=

ffiffiffiffi
p2

p
þ2A

ffiffiffiffi
p2

p
p2þE

BþA
ffiffiffiffi
p2

p
þAdp=

ffiffiffiffi
p2

p
�Adp2=

ffiffiffiffi
p3

2

p . Because p1 and ðdp; dqÞ are independent variables, the

above equation implies l should be a constant. Then from (23), we have
E ¼ H0ðlÞ �
T2ðlÞ
4GðlÞ þ GðlÞ dpþ TðlÞ

2GðlÞ

� �2

þ FðlÞdq2: ð24Þ
We thus could exploit this particular feature to construct a canonical transformation to action-an-
gle variables. Assuming the generating function S ¼ S1ðE; q1Þ þ S2ðE; q2Þ where S1 and S2 have the rela-
tions p1 ¼ @S1ðE;q1Þ

@q1
and p2 ¼ @S2ðE;q2Þ

@q2
, and then from (23) and (24), we obtain
@S1ðE; q1Þ
@q1

¼ l; ð25Þ

@S2ðE; q2Þ
@q2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� F

G
ðq2 �uÞ2
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� T

2G
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where E ¼ E�H0 þ T2ðlÞ
4GðlÞ. According to the definition of actions, we have
J1 ¼
1

2p

I
ldp1 ¼ l; ð27Þ

J2 ¼
1
p

Z qmax
2

u

@S2ðE; q2Þ
@q2

dq2; ð28Þ

¼
E�H0 þ T2ðlÞ

4GðlÞ

2ðFGÞ1=2 : ð29Þ
From (25) and (26), and considering ðp2; q2Þ to be periodic evolution around ðp;uÞ, we will have
S1 ¼ lq1; ð30Þ

S2 ¼ Sg þ p2 �
T

2G

� �
ðq2 �uÞ; ð31Þ
in which
Sg ¼
Z q2

u

E
G
� F

G
ðq2 �uÞ2

" #1=2

dq2; ð32Þ

¼ 2J2

Z Cðq2Þ

0
½1� x2�1=2dx; ð33Þ
where Cðq2Þ ¼
ffiffi
F
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E�H0þT2
4G

� �q ðq2 �uÞ.

Then we can obtain the new Hamiltonian with action-angle variables ðJ1; h1; J2; h2Þ
HðJ1; h1; J2; h2Þ ¼ HðJ1; J2Þ þ
@SðJ1; J2; q1; q2;uÞ

@t
; ð34Þ
where HðJ1; J2Þ ¼ Hdðp1; p2; q2Þ and has the following form
HðJ1; J2Þ ¼ 2½FðJ1ÞGðJ1Þ�
1=2J2 þH0ðJ1Þ �

T2ðJ1Þ
4GðJ1Þ

: ð35Þ
The Hannay angle is then obtained as
hh
a ¼

I
@

@Ja

@S
@u

� �
du: ð36Þ
The Berry phase is shift of total phase, hence it should correspond to the Hannay angle for J1. From

the expression of generating function, we have @
@J1

@S
@u

� �
¼ @

@J1

@Sg

@u

� �
þ @

@J1

T
2G

� �
. It is easy to find

@
@J1

@Sg

@u

� �
/ J2. By substituting the expressions of (20) and (21) and considering J1 ¼ 1 and J2 ¼ 0 for

eigenstate, we finally obtain the Hannay angle
hh ¼ �
I

2p2

1þ 6p2
du: ð37Þ
Comparing this result with (13), we have cg ¼ �hh, i.e., the Hannay angle is found to exactly equal
minus Berry phase of Eq. (13).

Now we discuss the novel connection between Berry phase and Hannay angle cg ¼ �hh. It is some-
what different from the usual derivative form that is known to exist at the semiclassical level for gen-
eral Hamiltonian systems [3]. This is because although our above two-mode system admits the
quantal equations of motion, it formally has classical structure exactly. That is, for the finite-mode sys-
tems, the quantum–classical correspondence could be exact rather than under the semiclassical
approximation, and the quantal phase exactly corresponds to the classical angular variable. On the
other hand, both the Berry phase and Hannay’s angle reflect the geometric property of the same cyclic
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procedure. We thus expect that they should be equivalent. The above argument is applicable to the
linear spin-1/2 system and spin-1 system [7,8], where the Hannay angles have been calculated and
found to be identical to the Berry phase except for a sign.

5. Conclusion

We have investigated the issues on adiabatic Berry phase and Hannay angle in the atom–molecule
conversion systems. We find that, in the atom–molecule conversion systems, the total phase of an
eigenstate acquired in an adiabatic cyclic evolution consists of the dynamic part and the geometric
part, while the geometric part cannot be accounted by the usual Berry phase formula due to the non-
linearity brought forth by the coupling between atom and molecule. A novel formula of geometric
phase is derived and an exotic monopole with fractional elementary charge in the parameter space
is found. We also investigate the Hannay angle in the system and find it exactly equal to minus Berry
phase. Finally, we make two remarks: (i) Our deduction is towards a simple two-mode nonlinear mod-
el in which the nonlinearity is from the fact that two atoms are needed to form one molecule. In prin-
ciple, our discussions can be extended to multi-mode systems where more than two atoms are needed
to form one molecule; (ii) Our above results are mean field limits of quantum many-body theory, and
generalizing these considerations to quantized field theories from the correspondence principle is of
interest for future study.
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