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Shapiro-like resonance in ultracold molecule production via an oscillating magnetic field
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We study the process of the production of ultracold molecules from ultracold atoms using a sinusoidally
oscillating magnetic-field modulation. Our study is based on a two-mode mean-field treatment of the problem.
When the magnetic field is resonant roughly with the molecular binding energy, Shapiro-like resonances are
observed. Their resonance profiles are well fitted by the Lorentzian functions. The linewidths depend on both the
amplitude and the duration of the applied modulations and are found to be dramatically broadened by the thermal
dephasing effect. The resonance centers shift due to both the many-body effect and the finite temperature effect.
Our theory is consistent with a recent experiment [S. T. Thompson, E. Hodby, and C. E. Wieman, Phys. Rev.
Lett. 95, 190404 (2005)]. Our model predicts a 1/3 ceiling for the molecular production yield in uncondensed
ultracold atomic clouds for a long coupling time, while for condensed atoms the optimal conversion yield could
be beyond the limit.
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I. INTRODUCTION

Shapiro resonance is one of the most remarkable properties
of the superconducting device, in which two weakly coupled
superconductors are subject to a voltage difference that
is the sum of a dc component V and a periodic signal
Vm sin(f t). A continuous range of nonzero dc currents are
possible if V = h̄

2e
kf , where 2e is the Cooper-pair charge,

h̄ is the reduced Planck constant, and k is an integer [1,2].
The Shapiro resonance provides a method for measuring
the constant of nature 2e/h̄ with such precision and uni-
versality [3,4] that, since 1972, the reversed view has been
adopted whereby 2e/h̄ is assumed to be known and the
above Shapiro resonance is used to define a standard unit of
voltage [2,5,6].

Essentially, the Shapiro resonance is a specific phenomenon
that emerges when the frequency of the external field is
commensurate with the intrinsic frequency of the system.
Recently, the Shapiro resonance has received renewed interest
and investigations in the Bose-Einstein condensates (BECs)
[7–9]. For example, in BEC Josephson junction, the dc
value of the drift current shows up as resonant spikes [7].
Under experimentally accessible conditions, well-developed
half-integer Shapiro-like resonances exist [8]. The Shapiro
effect also allows precise measurements in atomic BECs. The
ac-driven atomic Josephson devices can be used to define a
standard of chemical potential [9].

In the present paper, we investigate the Shapiro resonance
effects in ultracold molecule production. The conversion
of ultracold atoms to ultracold molecules by time-varying
magnetic fields in the vicinity of a Feshbach resonance is
currently a topic of much experimental and theoretical interest.
This particular conversion process lends itself well to the
formation of molecular Bose-Einstein condensates [10–13]
and atom-molecule superpositions [14]. These Feshbach
molecules and their creation process are also important for
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understanding ultracold fermionic systems in the BCS-BEC
crossover regime, because they are closely related to the
pairing mechanism in a fermionic superfluid that occurs
near a Feshbach resonance [15–18]. We study the process
of production of ultracold molecules from ultracold atoms
using a sinusoidally oscillating magnetic-field modulation.
The advantage of this method is that it greatly reduces the
heating the cloud experiences in the conversion process,
because the conversion occurs far from the center of the
Feshbach resonance. In recent experiments, this technique
has been applied and has produced molecules from atoms
more efficiently [19] and measured the binding energy of the
Feshbach molecule precisely.

However, the underlying mechanism is not fully under-
stood, and the important feature of the experimental data
has not been explained yet. The complexity arises from
the many-body problem and time-dependent field involved.
By weighting the two-body transition probability density
(primarily determined by the detuning from the resonant
continuum energy) over a Maxwell distribution, a two-channel
two-body model has been used to explain the experimental
observations, and it provides a qualitative explanation [20].
However, the Maxwell distribution gives rise to an asymmetric
distribution over the modulation frequency, prominently de-
parting from the observed Lorentzian-like resonance profiles
of symmetric property. Moreover, the above approach cannot
lead to the observed saturation of the conversion efficiency.
In the present paper, we exploit a many-body two-channel
model to investigate thoroughly the mechanism underlying
the Shapiro resonance phenomenon in the atom-molecule
conversion. By quantitatively including the thermal dephasing
effect in the noncondensed atom clouds, our model has
accounted for most experimental observations. Our model
calculation has reproduced the Lorentzian resonance line shape
and explained the observed maximum conversion efficiency
in terms of relaxation to a mean-field fixed point. We discuss
the applicability of our model to condensed and uncondensed
populations.

1050-2947/2010/81(1)/013602(8) 013602-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.013602


BIN LIU, LI-BIN FU, AND JIE LIU PHYSICAL REVIEW A 81, 013602 (2010)

The plan of this paper is as follows. In Sec. II, we present
our model and thoroughly analyze the Shapiro resonance. In
Sec. III, we apply our theory to explain the recent experiment.
Section IV is our conclusion.

II. SHAPIRO-LIKE RESONANCE IN ATOM-MOLECULE
CONVERSION FROM A TWO-CHANNEL

PERSPECTIVE

A. Model

Ignoring the two- and three-body atomic decay and colli-
sional molecular decay, we exploit the following two-channel
microscopic model to describe the dynamics of converting
atoms to molecules in the bosonic system

Ĥ = (εa − µ) â†â + [εb + ν(t) − 2µ] b̂†b̂

+ g√
V

(â†â†b̂ + b̂†ââ). (1)

Here â (â+) and b̂ (b̂+) are Bose annihilation (creation)
operators of atoms and molecules, respectively. The total
number of particles N = â†â + 2b̂†b̂ is a conserved constant.
The atomic and molecular kinetic energies are given by εa and
εb, µ is the chemical potential, g governs the atom-molecule
coupling strength, V denotes the quantization volume of
trapped particles, and therefore n = N/V is the mean density
of initial bosonic atoms. In Eq. (1), ν(t) represents the binding
energy of diatomic molecules that depends on the external
field, expressed approximately as [21]

ν(t) = − h̄2

m(aeff − r0)2
, (2)

where r0 is the effective range of the van der Waals potential,
m is the mass of a bosonic atom, and aeff denotes the effective
scattering length driven by the external magnetic field,

aeff = abg

(
1 − �B

B − B0

)
, (3)

where abg is the background scattering length, B0 is the
Feshbach resonance position, �B is the width of the resonance
defined through the relation with the atom-molecule coupling
term �B = mg2/4πh̄2|abg�µ|, where �µ is the difference
in magnetic moment between the closed-channel and open-
channel states. We focus on the situation in which the
selected external field Bex is modulated sinusoidally with
small amplitude Bmod and large frequency ω near a Feshbach
resonance, i.e.,

B(t) = Bex + Bmod sin(ωt). (4)

Since Bmod � Bex, the binding energy can be expanded into
series to the first order of Bmod,

ν(t) = νe + νm sin(ωt), (5)

where

νe = − h̄2

ma2
bg

(Bex − B0)2

[(
1 − r0

abg

)
(Bex − B0) − �B

]2 , (6)

and

νm = h̄2

ma2
bg

2(Bex − B0)�BBmod[(
1 − r0

abg

)
(Bex − B0) − �B

]3 . (7)

B. Shapiro-like resonance

We introduce the operators to investigate the dynamics of
this system [22],

K̂x =
√

2
â†â†b̂ + b̂†ââ

N3/2
, (8)

K̂y =
√

2i
â†â†b̂ − b̂†ââ

N3/2
, (9)

K̂z = 2b̂†b̂ − â†â

N
, (10)

with the commutators

[K̂z, K̂x] = 4i

N
K̂y, (11)

[K̂z, K̂y] = −4i

N
K̂x, (12)

[K̂x, K̂y] = i

N
(1 − K̂z)(1 + 3K̂z) + 4i

N2
, (13)

where K̂x, K̂y denote the coherence terms, and K̂z is the
population imbalance. Then the Hamiltonian can be written
as

H = N

4
{[ν0 + νm sin(ωt)]K̂z +

√
2ηK̂x}, (14)

where ν0 = νe + εb − 2εa is the energy difference between
atoms and molecules, and parameter η = 2g

√
n denotes the

coupling strength. Then the Heisenberg equations of motion
are

d

dt
K̂x = −1

h̄
[ν0 + νm sin(ωt)] K̂y, (15)

d

dt
K̂y = 1

h̄
[ν0 + νm sin(ωt)] K̂x − η

h̄

√
2

N

+ η

h̄

3
√

2

4

(
K̂z − 1

) (
K̂z + 1

3

)
, (16)

d

dt
K̂z = η

h̄

√
2K̂y. (17)

For a strongly condensed case and large particle number, it is
appropriate to take Kx,Ky , and Kz as three real numbers u, v,
and w, respectively. Then we get the mean-field Heisenberg
equations

d

dt
u = −1

h̄
[ν0 + νm sin(ωt)] v, (18)

d

dt
v = 1

h̄
[ν0 + νm sin(ωt)] u

+ η

h̄

3
√

2

4
(w − 1)

(
w + 1

3

)
, (19)

d

dt
w = η

h̄

√
2v. (20)
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FIG. 1. (Color online) Time-averaged population imbalance
−〈K̂z〉t for the driven system with different numbers of particles,
tilt ν0/η = 5, and scaled driving amplitude νm = 1.

To get the time-averaged value of the conversion varied
with different external fields, we characterize each quantum
trajectory by its time-averaged imbalance

−〈K̂z〉t ≡ − 1

�t

∫ �t

0
dt〈K̂z〉(t), (21)

employing the averaging interval �t � h̄/ν0. Initially, all par-
ticles are atoms. Figure 1 shows the results of such calculations
by numerically solving the Heisenberg equations (15)–(17) for
N = 2 and 20 under periodic modulation with the fixed scaled
amplitude νm/ν0 = 0.2 and frequencies ω ranging from 0 to
1.25ν0. The solution of the mean-field equations (18)–(20) is
also presented. There are several clear spikes that indicate the
Shapiro-like resonance in atom-molecule conversion driven by
the external magnetic field.

These spikes indicate that the frequency of the modulated
field is commensurate with the intrinsic frequencies of the
atom-molecule conversion system in the absence of the
periodic modulation. Now we analyze the intrinsic frequency.
For N = 2, using the Fock state as the basis, the commutators
(11)–(13) becomes

[K̂z, K̂x] = 2iK̂y, [K̂z, L̂y] = −2iK̂x, (22)

[K̂x, K̂y] = iK̂z. (23)

From the Heisenberg equations (15)–(17), we get

d2

dt2
K̂y + 1

h̄2

(
ν2

0 + η2
)
K̂y = 0. (24)

Then the intrinsic frequency is readily obtained from the
above equation as

√
ν2

0 + η2/h̄. Thus, the center of resonance is
expected to be

√
ν2

0 + η2/(h̄ω) = p/q with p and q as integers.
In our case, the resonances corresponding to p/q = 1, 2, 3 are
more prominent. With N increasing, we find that the resonance
center shifts to the right due to the many-body effect. We
can obtain the intrinsic frequency in the mean-field limit, i.e.,
N → ∞. From the mean-field equations (18)–(20), we readily

obtain

d2

dt2
v + 1

h̄2

[
ν2

0 + η2(1 − 3w)
]
v = 0. (25)

Initially all particles are in atom states, i.e., w = −1. Approx-
imately substituting it into the above equation, we obtain the
explicit expression of the frequency

√
ν2

0 + 4η2/h̄. This implies
that, due to the many-body effect [23], the resonance center
shifts to

√
ν2

0 + 4η2/(h̄ω) = 1, 2, 3, . . . . The above theoretical
analysis agrees with our numerical results.

C. Phase space at the Shapiro-like resonance

The Shapiro resonance phenomenon can be demonstrated
intuitively by the trajectories in the phase space of the system.
Notice that the constraint u2 + v2 = 1

2 (w − 1)2(w + 1), and
introducing the canonical variable s = w, and θ = arctan(v/u)
denoting the population imbalance and the relative phase
between atoms and molecules, the mean-field Heisenberg
equations can be replaced by a classical Hamiltonian of the
form

H = 1

h̄
[ν0 + νm sin(ωt)] s + η

h̄

√
(s − 1)2(s + 1) cos θ,

(26)

and the canonical equations of motion are

dθ

dt
= ∂H

∂s
= 1

h̄
[ν0 + νm sin(ωt)] − η

h̄

(1 + 3s)

2
√

1 + s
cos θ,

(27)
ds

dt
= −∂H

∂θ
= η

h̄

√
(1 − s)2(1 + s) sin θ. (28)

Using a generation function

F (θ, S) =
[
θ − ν0t

h̄
+ νm

h̄ω
cos(ωt)

]
S, (29)

with the following relations

s = ∂F

∂θ
= S, (30)

	 = ∂F

∂S
=

[
θ − ν0t

h̄
+ νm

h̄ω
cos(ωt)

]
, (31)

we obtain the new Hamiltonian

K(S,	) = H + ∂F

∂t

= η

h̄

√
(1 − S)2(1 + S)

cos

[
	 + ν0t

h̄
− νm

h̄ω
cos(ωt)

]
. (32)

The secular evolution of S and 	 can be evaluated from the
time-averaged Hamiltonian

〈K(S,	)〉T = 1

T

∫ T

0
K(S,	) dt, (33)

with T = 2π/ω.
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FIG. 2. Poincaré section of the classical Hamiltonian (26) with
tilt ν0/η = 24, scaled driving amplitude νm = 0.2ν0, and modulation
frequency (a) ω/ν0 = 0.95 (off resonance) and (b) ω/ν0 = 1 (near
resonance).

Now, we consider the 1:1 resonance case that h̄ω ≈ ν0,

〈K(S,	)〉T ≈ J1

(
νm

ν0

)
η

h̄

√
(1 − S)2(1 + S) sin 	. (34)

where J1(x) is the first-kind Bessel function. The phase graph
of the periodic averaged Hamiltonian system reflects the
Poincaré section of the Hamiltonian system (26), as shown
in Fig. 2. For the case of off-resonance, the integral in Eq. (33)
approximates to zero, which implies that the time-averaged
s varies a little in time, while the variable θ increases with
time almost linearly. The corresponding Poincaré section is
shown in Fig. 2(b). It is shown that the phase space at the
transition changes dramatically.

D. Intrinsic resonance width: Arnold tongues

For the initial condition s = w = 1, whether its trajectory
falls into a resonance regime can be judged from the fol-
lowing resonance condition: �H > 2ν0/h̄, where �H is the
difference between the maximum and the minimum value of
H in the time interval �t � h̄/ν0. For different νm and ω,
we obtain the regions in the two-dimensional parameter space
where the resonance emerges. These regions are named Arnold
tongues [24]. To draw out the Arnold tongues in parameter
space, the main numerical tool used in this work is the winding
number W

W = lim
t→∞

θ (t) − θ (0)

t
, (35)

with initial conditions [θ (0), s(0)]. If the ratioW/ω is rational,
i.e., W/ω = q/p, here q and p are natural numbers, then
[θ (t), s(t)] is a resonant solution of (q : p) type, i.e.,

[θ (t + pT ), s(t + pT )] = [θ (t), s(t)] + (2πq, 0), (36)

which means the system runs q times in the time pT interval. In
our system, only (q : 1) type is significant. In Fig. 3, we show
the first five resonance regions with ν0/η = 5. The width of the
resonance regions is broadened as the modulation amplitude
νm increases.

FIG. 3. Arnold tongues for resonance modes (1:1), (2:1), (3:1),
(4:1), and (5:1), from right to left, with ν0/η = 5.

III. APPLICATION TO EXPERIMENT

A. Noncondensed atoms

The generation of cold dimers from a cold Bose gas
using an oscillating magnetic field, rather than the more often
studied linear sweep through a Feshbach resonance, has been
implemented experimentally by the Wieman group at JILA
[19]. Their study showed that the method works and provides
substantial data. The advantage of this method is that it greatly
reduces the heating the cloud experiences in the conversion
process, because the conversion mainly occurs far from the
center of the Feshbach resonance. In a practical experiment
in which the atoms are not condensed, the many modes are
strongly coupled, and the full Hamiltonian will read

Ĥ c =
∑

p

(εa,p − µ)â†
pâp +

∑
q

[εb,q + ν(t) − 2µ]b̂†q b̂q

+ g√
V

∑
p,q

(â†
p+q/2â

†
−p+q/2b̂q + b̂†q â−p+q/2âp+q/2).

(37)

The kinetic-energy distribution of the thermal particles are
characterized by kBT , here kB is the Boltzman constant, and
T is the temperature. In the experiment, kBT is much smaller
than the effective Feshbach resonance width g

√
n, therefore

we ignore the variation in the kinetic energy, i.e., εa,p → εa and
εb,q → εb. This approximation is tantamount to denoting each
“energy band” of the thermal particles by one energy level, as
schematically plotted by Fig. 4. In such an approximation, the
Hamiltonian (37) reduces to Eq. (1).

The above single-mode approximation has been success-
fully applied to explain the data of Feshbach atom-molecule
conversion with a linear sweep [23]. For a long time evolution,
thermal particles scattering off the single-mode mean field
will cause phase diffusion at a rate proportional to the thermal
cloud temperature, i.e., γ = 1/τd = kBT /(2πh̄). Here, τd =
2πh̄/(kBT ) is the dephasing time [25]. To account for the
experimental data, we need to include the dephasing effect
in our model. Modeling dephasing by fully including the
quantum effects requires sophisticated theoretical studies. The
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FIG. 4. Schematic of the swept magnetic field in the experiment.
See text for details.

standard approaches of quantum optics for open systems
involve quantum kinetic master equations. Here, we adopt
the simple mean-field treatment in our model. From the
mean-field viewpoint, the decoherence term introduces a γ

transversal relaxation term into the mean-field equations of
motion according to [26,27],

d

dt
u = −1

h̄
[ν(t) + εb − 2εa]v − γ u, (38)

d

dt
v = 1

h̄
[ν(t) + εb − 2εa]u

+ η

h̄

3

4

√
2 (w − 1)

(
w + 1

3

)
− γ v, (39)

d

dt
w = η

h̄

√
2v. (40)

The imbalance of atom pairs and molecules w is varied in
the range of [−1, 1] with the lower limit corresponding to a
pure atomic gas and w = 1 for a pure molecular gas. What we
are concerned about is, after the conversion process, how many
atomic pairs are converted to molecules. We use wf to denote
the value of w when the magnetic field sweeps back. The
molecular conversion efficiency can be read from the variable
wf as � = (1 + wf )/2.

Now we apply our theory to the experiment of 85Rb by
Ref. [19]. The atoms are held in a purely magnetic trap at a bias
field of Br . After evaporative cooling, the magnetic field B is
linearly swept to a selected value at Bex, and then a sinusoidal
magnetic-field pulse with peak-to-peak amplitude Bmod and
modulation frequency ω for a duration of the coupling time is
applied. The swept magnetic field can be expressed as

B =

⎧⎪⎨
⎪⎩

Br − αt 0 � t < t0,

Bex + Bmod sin(ωt) t0 � t < t0 + tc,

Bex + αt t0 + tc � t < 2t0 + tc.

(41)

Here, Br = 162 G, Bex = 156.5 G, Bmod = 0.13 G, ω ranges
from 2 to 9 kHz, t0 is the linear sweep time, α = (Br − Bex)/t0
is the linear sweep rate, and tc is the coupling time. The
sketch curve is shown in Fig. 4. For the thermal cloud, with
temperature T , one molecule has f ive degrees of freedom
while two atoms have six degrees of freedom; according to

the equipartition theorem, we have (2εa − εb) ≈ kBT /2. The
scaled parameters in Eqs. (38)–(40) are

ν(t) = − h̄2

ma2
bg

(B − B0)2

[(
1 − r0

abg

)
(B − B0) − �B

]2 , (42)

and

η = 2
√

4πh̄2|abg�µ|�Bn/m. (43)

The experimental parameters are abg = −443a0, r0 = 185a0

[28], �B = 10.71 G, B0 = 155 G, �µ = 1.2 × 10−4µB ,
temperature T = 20 nK, and density n = 1011 cm−3; here a0

and µB are the Bohr radius and Bohr magneton, respectively.
The difference of magnetic moment �µ is extracted from
the experimental data [29]. Under this condition, the ratio
between the kinetic-energy distribution of thermal particles
and the effective Feshbach resonance width, i.e., kBT /(g

√
n),

is estimated to be 0.05, much smaller than unity. Figure 5
shows the conversion efficiency as a function of modulation
frequency for three different coupling times. The resonance
linewidth is broadened by the dephasing term. There is
a clear Lorentzian distribution resonance at a frequency
of about 6.25 kHz, close to the experiment. Besides the
fundamental frequency resonance at ω = 6.25 kHz, there is
also a weak (2:1) mode resonance at about ω = 3.1 kHz,
which has not been observed in an experiment. Our linewidth
is approximately 0.3 kHz at the zero conversion limit, as shown
in the inset in Fig. 5. In the experiment, it is about 0.2 kHz.

In Ref. [20], the conversion efficiency is given by a
weighted average of the two-body transition probability
density ρ over a Maxwell distribution. For the long cou-
pling time limit, i.e., tf → ∞ in Ref. [20], the two-body
transition probability density ρ can be approximated by ρ ∝
δ(Eav

b + h̄ωmod − p2
res/m). Then one could get � = 2Nmol/

N ∝ √
Eav

b + h̄ωmod exp[−β(Eav
b + h̄ωmod)]. This is an

FIG. 5. Conversion efficiency of atoms converted to molecules as
a function of modulation frequency for three different coupling times.
For a fixed coupling time, the curve can be fitted by a Lorentzian
distribution � = �0 + 2A

π

�

4(ω−ωc)2+�2 ; e.g., for tc = 38 ms, the fitting
parameters are �0 = 0.06, ωc = 6.2, � = 0.6, and A = 0.23. In the
inset, by fitting the linewidth vs conversion data to a straight line, we
find the zero conversion limit to be 0.3 kHz.
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FIG. 6. Conversion efficiency of atoms converted to molecules
under a periodic modulation with amplitude Bmod = 0.13 G and
frequency ω = 6.25 kHz with respect to coupling time for different
temperatures. The squares with error bars are from Fig. 4(a) of
Ref. [19]. The conversion of ultracold atoms to molecules increases
with the coupling time until it becomes saturated at 1/3.

asymmetric � distribution, departing from the observed
Lorentzian-like resonance profiles.

In our calculation, we find that in the three stages of
magnetic-field change expressed by Eq. (41), the linear process
contributes little to the atom-molecule conversion. This is
because the oscillation center Bex is still far away from the Fes-
hbach resonance center. The atom-molecule conversion mainly
occurs in the process of applying the sinusoidal magnetic field,
where ν(t) can be expressed as ν0 + νm sin(ωt). Therefore, the
above observed resonance phenomenon corresponds to the
Shapiro resonance discussed in Sec. II, while the linewidth is
dramatically broadened by the thermal dephasing effect.

In Fig. 6, we show the conversion efficiency with respect
to coupling time. The squares with error bars are experimental
data in Ref. [19]. For temperature T = 20 nK and density
n = 1011 cm−3, our results are close to the experimental
data. We also show the cases of different temperatures by
considering the isobaric condition, i.e., nT = const. The above
calculation shows that increasing the temperature will lessen
the molecular production because the dephasing term is pro-
portional to the temperature. On the other aspect, the conver-
sion efficiency decreases with the increasing temperature. For
different temperatures, a common feature is that the conversion
efficiency increases with the coupling time until the conversion
efficiency becomes saturated at 1/3. This can be explained by
investigating Eqs. (38)–(40), where u = v = 0 and w = −1/3
is the fixed point in the absence of the dephasing term. The
observed limit in the atom-molecule conversion efficiency has
been extensively discussed, including the Landau-Zener (LZ)
model of two-body molecular production [30], phase-space
density model [31], equilibration model at finite temperatures
[32], and nonlinear particle interaction model [33]. Our present
investigation suggests a new mechanism for the observed
maximum efficiency: the system is found to relax into the
mean-field fixed point due to the dephasing effect.

Finally, we would like to discuss our single-mode approx-
imation. This approximation is expected to work well only
for the strongly condensed case. The validity of the above
two-mode classical model in the noncondensed case is not
clear. For the noncondensed case, the Bose gas usually needs
a more delicate treatment, because the particles are distributed
over many spatial modes. However, since bosonic occupation
numbers can become large at low temperatures even above the
BEC transition temperature, our above calculations suggest
that the two-mode classical model might be applicable in
this case. This idea is consistent with recent work by Castin,
Gardiner, and others [34].

B. Condensed atoms

In this section, we extend our discussion to the case
of condensed atoms. The main source of dephasing in
a BEC is the thermal cloud of particles surrounding the
condensate. Thermal particles scattering off the condensate
will produce a dephasing rate γ proportional to the thermal
cloud temperature. The dephasing rate will go down as the
thermal fraction decreases and become negligible at extremely
low temperature. The dephasing rate can be estimated as
γ = 8π3(8πa2

effnthv) [35]. The bracketed term is the elastic
collision rate due to noncondensed atoms in the thermal
cloud. It is the product of the scattering cross section for
identical particles (8π times the square of the s-wave scattering
length aeff), the number density of noncondensed atoms nth,
and their thermal velocity at temperature T , v = √

2kBT /m.
Using the parameters of 85Rb, nth = 1010 m−3 [35], we have
γ � 10−3 Hz at T = 100 nK. It is negligible for our following
calculations. Actually, for a pure BEC, the interaction between
the coherent atoms becomes important. After ignoring the
kinetic energies of particles, the Hamiltonian can be written as

Ĥ = ν(t)b̂†b̂ − U

V â†â†ââ + g√
V

(â†â†b̂ + b̂†ââ),

where U = 4πh̄2|abg|/m denotes the nonlinear interaction. In
the mean-field limit, we can derive the Heisenberg equations
of motion as

d

dt
u = −ν(t)

h̄
v − 2Un

h̄
v(1 − w), (44)

d

dt
v = ν(t)

h̄
u + η

h̄

3

4

√
2 (w − 1)

(
w + 1

3

)
+ 2Un

h̄
u(1 − w),

(45)
d

dt
w = η

h̄

√
2v. (46)

Figure 7 presents the conversion efficiency under a periodic
modulation with fixed amplitude Bmod = 0.5 G and different
frequencies by numerically solving Eqs. (44)–(46). The density
for the condensed atoms is n = 1012 cm−3, and thereby the
scaled nonlinear interaction is Un/η = 0.14. One sees that
there is a Rabi oscillation that can reach a high conversion
efficiency. In the experiment, they observe 55% conversion
for coupling time 1.6 ms [19]. The observation marked by a
dark triangle in Fig. 7 is consistent with our result.

013602-6



SHAPIRO-LIKE RESONANCE IN ULTRACOLD MOLECULE . . . PHYSICAL REVIEW A 81, 013602 (2010)

FIG. 7. The conversion efficiency from condensed atoms to
molecules under a periodic modulation with fixed amplitude Bmod =
0.5 G and different frequencies. The density for the condensed
atoms is n = 1012 cm−3. The dark triangle marks the experimental
observation in Ref. [19].

Figure 8 presents the conversion efficiency with respect
to modulation frequency for different nonlinear interactions
U . The coupling time for this calculation is 1.6 ms. The other
parameters are the same as in Fig. 7. In Fig. 8, we observe some
oscillations besides the main resonance peaks and find that the
maximum conversion efficiency could be far beyond the limit
1/3. Because the resonance center can be still approximated
by ω = √

ν2
e + 4η2/h̄, it implicitly depends on the density

through parameter η. In the experiment, the density of the con-
densed atoms is about ten times larger than that of the thermal
cloud; therefore, the resonance center shifts to the right-hand
side when compared to the thermal atomic cloud case in Fig. 5.
Moreover, we find that the interaction between the coherent
atoms will lead to the shift of the resonance profile, as clearly
shown in Fig. 8.

FIG. 8. The conversion efficiency from condensed atoms to
molecules with respect to modulation frequency for different nonlin-
ear interactions U . The coupling time is 1.6 ms. The other parameters
are the same as in Fig. 7.

IV. CONCLUSIONS

In conclusion, we have thoroughly investigated the mech-
anism underlying the Shapiro resonance phenomenon in the
atom-molecule conversion by exploiting a microscopic two-
channel model. With the inclusion of the thermal dephasing
effect in the noncondensed atom clouds, our model could
account for most experimental observations. We also extend
our discussions to the case of condensed atoms. Our theory has
some interesting predictions waiting for future experimental
testing.
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[6] R. Pöpel, Metrologia 29, 153 (1992).
[7] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Phys.

Rev. A 59, 620 (1999).
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