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We investigate the adiabaticity of the dark state in a nonlinear atom-trimer conversion
system in a stimulated Raman adiabatic passage (STIRAP). We find that, in the absence
of the nonlinear collisions, the adiabatic condition for this nonlinear system only depends
on the Rabi-frequency of the dimer-trimer coupling optical field, which is different from
traditional STIRAP processes. In the presence of the nonlinear collisions, the adiabatic
condition also relies on the atom-dimer coupling Rabi frequency. However, its influence
is really small. Moreover, we propose a more feasible two-photon STIRAP scheme that
has better adiabaticity and hence could yield higher atom-trimer conversion efficiency.
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state; adiabaticity.
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1. Introduction

Adiabatic theorem1–4 plays a major role in various areas of physics. According to
the adiabatic theorem, if the parameters of the system vary with time much more
slowly than the intrinsic motion of the system, the system will undergo adiabatic
evolution. For a quantum system, adiabatic evolution means that an initial non-
degenerate eigenstate remains to be an instantaneous eigenstate when the Hamil-
tonian changes slowly compared to the level spacings. Due to the fundamental
importance of adiabatic evolution in quantum theory and applications of quantum
state control, the adiabatic theory has been very actively studied under various
practical conditions in the past years.5,6

Recently, the adiabatic evolution has been extensively used to create an ul-
tracold molecular gas or even a molecular Bose–Einstein condensate (BEC) from
its atomic counterpart in the stimulated Raman adiabatic passage (STIRAP),7–13

where the existence of the coherent population trapping (CPT) state or dark state
facilitates the adiabatic coherent population transfer between atoms and molecules
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with high conversion efficiency. However, different from the traditional STIRAP
in an Λ-atomic system, the atom-molecule STIRAP contains nonlinearities that
stem from the mean-field treatment of the interparticle interactions and the con-
version process of atoms to molecules. The existence of these nonlinearities make
it not justified to apply the adiabatic condition of quantum mechanics to non-
linear BEC system because of the absence of the superposition principle. There-
fore, it is very difficult to analyze the adiabaticity of the atom-molecule conversion
systems.

The adiabatic theory for nonlinear quantum systems, i.e. the systems gov-
erned by the nonlinear Schrödinger equation, was first discussed in Ref. 5, where
adiabatic conditions and adiabatic invariants were obtained through casting the
nonlinear Schrödinger equation into an effective classical Hamiltonian. Recently,
Ling et al.10,11 extended the above adiabatic theory to the atom-dimer conver-
sion system by linking the nonadiabaticity with the population growth in the
collective excitations of the dark state. Following the above work, an improved
adiabatic condition was put forward by Itin et al.12 via applying methods of
classical Hamiltonian dynamics under the collisionless limit. Very recently, the
atom-molecule dark state technique in STIRAP process is theoretically general-
ized to create more complex homonuclear or heteronuclear molecules-trimer or
tetramer.14–16 Moreover, following the approach of Ref. 10, the adiabatic condi-
tion for the atom-heteronuclear-trimer conversion process17 is developed in the
collisionless limit.

In this paper, we include the collisional mean-field interactions and use meth-
ods of classical Hamiltonian dynamics to study the adiabaticity of the coherent
atom-heteronuclear-trimer conversion system,14 where the heteronuclear trimers
A2B are formed via two different paths with an intermediate homonuclear or het-
eronuclear dimer state A2 or AB. In Sec. 2, we model the system, focus on the
nonlinear atom-trimer dark state solution and propose two schemes to implement
the two-photon STIRAP. In Sec. 3, we cast the quantum Hamiltonian under the
mean-field approximation to an effective classical Hamiltonian and take two math-
ematical methods to obtain the frequencies of the fixed point which corresponds
to the CPT state, and further obtain the adiabatic condition from classical adi-
abatic dynamics. Moreover, we also discuss and compare the adiabaticity of the
CPT state under two kinds of two-photon STIRAP processes. In Sec. 4, we give
our conclusions.

2. Models, Equations and CPT State

Following,14,17 we consider that two species of Bosonic atoms are converted into
stable heteronuclear trimers A2B via the STIRAP, where the intermediate dimers
(A2 or AB) are formed by two different reaction paths, i.e. AA-path and AB-path,
as is shown in Fig. 1. Including s-wave scattering processes, the second quantized
Hamiltonian under the rotating frame reads,
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Fig. 1. Atom-trimer conversion system coupled by two laser fields for single path AA and AB.
Ω, λ are the Rabi frequencies, δ and ∆ are the one- and two-photon detunings, respectively.

Ĥ = −�

∑
i,j

χ′
ijψ̂

†
i ψ̂

†
j ψ̂jψ̂i − �[δψ̂†

dψ̂d + (∆ + δ)ψ̂†
gψ̂g

+λ′(ψ̂†
dψ̂aψ̂m +H.C.) − Ω′(ψ̂†

gψ̂dψ̂n +H.C.)] , (1)

Here m = a, n = b (m = b, n = a) for the AA-path (AB-path), ψ̂i(ψ̂
†
i ) are the

annihilation (creation) operator, where the indices i, j = a, b, d, g stand for atoms,
dimers and trimers, and the terms proportional to χij represent two-body collisions.

As in papers,8,18 to guarantee the conservation of the total particle numbers, we
introduce two multipliers �µa and �µb into the Hamiltonian in Eq. (1) and obtain
the grand canonical Hamiltonian “Kamiltonian”,

K̂ = Ĥ − �µaN̂A − �µbN̂B , (2)

where �µA, �µB are identified as the chemical potentials of the corresponding atoms,
and N̂A, N̂B are the operators for the total particle number of the corresponding
species.

From the Kamiltonian we can easily derive the equations of motion of the unit-
scaled operators. As usual, in the mean-field treatment, ψ̂i and ψ̂†

i are replaced by
c-number

√
nψi and

√
nψ∗

i , where n is the density of the total particle number.
For the AA-path, the set of the mean-field Gross-Pitaevskii (G-P) equations (with
� = 1) is,

iψ̇a = (ωa − µa)ψa − 2λψ∗
aψd ,

iψ̇b = (ωb − µb)ψb + Ωψ∗
dψg ,

iψ̇d = (ωd − 2µa − iγ − δ)ψd − λψ2
a + Ωψ∗

bψg ,

iψ̇g = (ωg − 2µa − µb)ψg − (∆ + δ)ψg + Ωψdψb .

(3)
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For the AB-path, it becomes,

iψ̇a = (ωa − µa)ψa − λψ∗
bψd + Ωψ∗

dψg ,

iψ̇b = (ωb − µb)ψb − λψ∗
aψd ,

iψ̇d = (ωd − µa − µb − iγ − δ)ψd − λψaψb + Ωψ∗
aψg ,

iψ̇g = (ωg − 2µa − µb)ψg − (∆ + δ)ψg + Ωψdψa ,

(4)

where ωi = −2
∑

j χij |ψj |2, χii = χ′
iin, χij = χ′

ijn, λ = λ′
√
n, Ω = Ω′√n are the

renormalized quantities, and the phenomenological parameter γ is introduced to
characterize the decay of the quasibound molecules (dimer).

Taking the time derivative in Eqs. (3) and (4) to be zero and making use of the
two population conversion conditions of species a and b for different paths, we can
show that, Eqs. (3) and (4) admit the following stationary-state solutions with no
dimer population, i.e. the generalized CPT state,

|ψg|2 =
k(λ/Ω)2

3(1 + k(λ/Ω)2)
,

|ψa|2 = 2|ψb|2 =
2
3
(1 − 3|ψg|2) ,

(5)

where k = 4 (k = 1) for the AA-path (AB-path). In the above equations, NA =
2NB = 2/3. The two-photon resonance conditions and the chemical potentials
corresponding to the CPT solution for the two paths are the same, i.e.

µa = − 2(χaa|ψa|2 + χab|ψb|2 + χag|ψg|2) ,
µb = − 2(χab|ψa|2 + χbb|ψb|2 + χbg|ψg|2) ,

∆AA = ∆AB = − δ + 2(2χag + χbg − χgg)|ψg|2
+ (4χaa − 2χag + 4χab − χbg)|ψa|2 .

(6)

This suggests that, by dynamically maintaining the two-photon resonance condi-
tion, population can be concentrated in atomic states and trimer bound states
under the respective limit λ/Ω → 0 and λ/Ω → ∞.

In the following discussions, we will consider two schemes to implement the
two-photon STIRAP, where a pair of atoms is first associated to the molecular
dimer via PA, the dimer molecule is then photoassociated with another atom to
the bound trimer molecule. In scheme (i), the atom-dimer coupling Rabi frequency
λ is constant, and the dimer-trimer coupling Rabi frequency is modulated as Ω(t) =
Ω0 sech t/τ ; In scheme (ii), the atom-dimer coupling Rabi frequency is controlled as
λ = λ0 cosh t/τ , and the dimer-trimer coupling Rabi frequency Ω is fixed. In both
cases, λ/Ω ∼ cosh t/τ satisfies λ/Ω → 0 as t → 0 and λ/Ω → ∞ as t → ∞, which
facilitates adiabatic coherent population transfer between atoms and trimers.
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3. Classical Hamiltonian Dynamics and Adiabatic Condition

The existence of the CPT state facilitates adiabatic coherent population transfer
between atoms and trimers. However, owing to the invalidation of the superposi-
tion principle in the nonlinear atom-trimer conversion system, it is not justified to
apply the adiabatic condition of quantum mechanics to study the adiabatic evo-
lution of the CPT state. To overcome this difficulty, in this section, we attempt
to obtain the adiabatic criterion for this nonlinear system with classical adiabatic
dynamics5,12 through casting the mean-field Hamiltonian to an effective classical
one. Therefore, the adiabatic parameter of this nonlinear system can be defined as
the ratio between the change rate of the external parameters and the fundamental
frequencies of periodic orbits around the fixed point which corresponds to the CPT
state.5 These frequencies can be evaluated by linearizing equations of motion of
the classical Hamiltonian around the fixed point. Here we take two mathematical
methods to obtain these frequencies. On the one hand, in the collisionless limit,
they are obtained by the linearization process with reducing the degrees of freedom
of the classical system. On the other hand, in the collision case, they are obtained
through solving the eigenvalues of the Hamiltonian–Jacobi matrix.

3.1. Collisionless model

3.1.1. Intrinsic frequencies of the classical Hamiltonian system for the
AA-path

In the absence of nonlinear collisions, i.e. χij = 0, the two-photon resonance
condition and the chemical potentials in Eq. (6) are simplified to ∆ + δ = 0
and µa = µb = 0. Then, K = H . Taking use of the canonical transformation:
ψa = x1 + iy1, ψb = x2 + iy2, ψd = x3 + iy3, ψg = x4 + iy4, the mean-field
Hamiltonian for the AA-path can be cast into the following classical Hamiltonian,

H = 2Ω[x3(x2x4 + y2y4) − y3(x4y2 − x2y4)]

− 2λ[x3(x2
1 − y2

1) + 2x1y1y3] + δ(x3
3 + y3

3) . (7)

Here xk are canonical momenta, while yk are the coordinates. In fact, the system
has only 2 degrees of freedom (d.o.f.), because there exists two integrals of motion,
i.e. x2

1 + y2
1 + 2(x2

3 + y2
3 + x2

4 + y2
4) = NA, x2

2 + y2
2 + x2

4 + y2
4 = NB. For simplicity,

we consider the case δ = 0. Let H = 0. On this manifold, dynamics at constant
parameters λ, Ω is completely integrable. Indeed, I3 ≡ x3/y3 is the additional
integral of motion. As a result, I1 ≡ I3(y2

1 −x2
1)−2x1y1 and I2 ≡ I3(x2x4 + y2y4)−

(x4y2 − x2y4) are also integrals of motion. In case the external parameters λ, Ω
changes with time, the system may leave the H = 0 manifold. However, if I1,2 are
initially equal to zero, then even with time-dependent parameters dynamics will be
confined to the initial H = 0 manifold. The case where all population are initially
atoms a and b is of this type, i.e. initially x3,4 = y1,2,3,4 = 0, hence H = 0.
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With H = 0, we can reduce the system to 1 d.o.f. classical Hamiltonian system.
Without loss of generality, let I3 = 0, then we find ẋ3 = 0, ẏ1 = 0, and ψb, ψg

have the same phase, i.e. y2/x2 = y4/x4 = tan θ. Therefore, we can make the
following transformation: x2 = z2 cos θ, y2 = z2 sin θ, x4 = z4 cos θ, y4 = z4 sin θ,
where z2 = |ψb| and z4 = |ψg|. It is readily to demonstrate that θ̇ = 0, ż2 =
−Ωy3z4, ż4 = Ωy3z2. Additionally, owing to the dependence of z2 and z4 with the
population conversation condition of atom b: z2

2 + z2
4 = NB, we can further lessen

1/2 d.o.f. of the system, then the equations of motion reduce to ẋ1 = −2λx1y3,
ẏ3 = λx2

1 − Ωz2
√
NB − z2

2 , ż2 = −Ωy3
√
NB − z2

2 . From the particle-conversation
condition of atom a: x2

1+2y2
3 = 2z2

2 , we can make transformations: x1 =
√

2z2 cosφ,√
2y3 =

√
2z2 sinφ. Then d.o.f. of the system can be lessen to 1 with the following

equations of motion,

ż2 = −Ωz2

√
1
3
− z2

2 sinφ ,

φ̇ =

(
2λz2 − Ω

√
1
3
− z2

2

)
cosφ .

(8)

Let the right-hand sides of the above equations be zero, then the fixed point is
easily obtained,

z2 =
Ω√

12λ2 + 3Ω2
, φ = 0 , π . (9)

This fixed point corresponds to the CPT state in Eq. (5). For small-amplitude
oscillations, linearizing motions of equation in Eq. (8) around the fixed point in
Eq. (9), the linearized matrix can be obtained,

M =




(6z2
2 − 1)Ω sin(φ)√

3 − 9z2
2

−z2
√

1
3
− z2

2Ω cos(φ)

2λ+
z2Ω cos(φ)√

1/3 − z2
2

√
1
3
− z2

2Ω sin(φ)


 . (10)

Substituting Eq. (9) into the above matrix and solving the eigenvalues of M , we
can obtain the intrinsic frequencies of the system,

ωAA
± = ± Ω√

3
. (11)

As we know, these frequencies can be real, complex or pure imaginary. Only the real
frequencies correspond to the stable fixed points. Others imply the unstable ones.
Since ωAA

± are all real, the fixed point in Eq. (9) is stable. For a classical system
with one degree of freedom, the stable fixed points are the elliptic points. From
Fig. 2 where the phase portrait of Eq. (8) is plotted, we see that, as the parameter
λ/Ω changes from 0 to ∞, the stable fixed point moves from z2 = 1/

√
3 to 0.
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Fig. 2. Single path AA: Phase portrait of (8). As parameter λ/Ω increases, the stable fixed point
(corresponding to the dark state) moves from z2 = 1/

√
3 to 0.

3.1.2. Intrinsic frequencies of the classical Hamiltonian system for the
AB-path

In the absence of interparticle interactions, we can similarly cast the mean-
field Hamiltonian for the AB-path into the form of a classical system under the
two-photon resonance condition (i.e. ∆ + δ = 0),

H = 2Ω[x3(x2x4 + y2y4) − y3(x4y2 − x2y4)]

− 2λ[x3(x2
1 − y2

1) + 2x1y1y3] + δ(x3
3 + y3

3) . (12)

The conditions of conserved particle number are x2
1+y2

1 +x2
3+y2

3 +2(x2
4+y2

4) = NA,
x2

2 + y2
2 + x2

3 + y2
3 + x2

4 + y2
4 = NB. Let H = 0. On the manifold of H = 0,

dynamics at constant parameters λ, Ω is completely integrable. Here I3 ≡ x3/y3,
I1 ≡ I3(x1x2 − y1y2) + (x1y2 + x2y1) and I2 ≡ I3(x1x4 + y1y4) + (x1y4 − y1x4)
are the three integrals of motion. In case initial particles are all atoms a and b,
i.e. initially x3,4 = y1,2,3,4 = 0, H = 0.

With H = 0, we further reduce the system to 1 d.o.f. classical Hamiltonian. Let
I3 = 0, we find that ẋ1 = 0, ψa, ψg have the same phase θ, and ψb has the inverse
phase −θ (i.e. y1/x1 = −y2/x2 = y4/x4 = tan θ). Making the transformation: x1 =
z1 cos θ, y1 = z1 sin θ, x2 = z2 cos(−θ), y2 = z2 sin(−θ), x4 = z4 cos θ, y4 = z4 sin θ,
where z1 = |ψa|, z2 = |ψb|, z4 = |ψg|, we can prove that θ̇ = 0 and equations of
motion reduce to ż1 = −y3(Ωz4 + λz2), ż2 = −λz1y3, ż4 = Ωz1y3, ẏ3 = z1(λz2 −
Ωz4). From the two population conversation conditions, we find y2

3 + 2z2
2 = z2

1 and
z4 =

√
1/3 − (z2

1 − z2
2). Therefore, we can make the transformations: y3 = z1 cosφ,√

2z2 = z1 sinφ. Then we reduce the system to 1 d.o.f. with equations of motion,
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ż1 =

(
− z2

1√
2
λ sinφ− Ωz1

√
1
3

+
z2
1

2
sin2 φ− z2

1

)
cosφ ,

φ̇ = −z1λ√
2
− z1λ√

2
cos2 φ+ Ω

√
1
3

+
z2
1

2
sin2 φ− z2

1 sinφ .

(13)

It is easy to obtain the fixed point of the above equations which corresponds to the
CPT state, i.e.

z1 =
√

2Ω√
3(λ2 + Ω2)

, φ =
π

2
, (14)

and the intrinsic frequencies of the system by linearizing Eq. (13) around this fixed
point,

ωAB
± = ±

√
2
3
Ω . (15)

Since ωAB
± are all real, we can conclude that the fixed point is stable. As times

increase, λ/Ω grows, and the fixed point goes from |z1| =
√

2/3 to 0, which is not
shown.

3.2. Collisional model

In the system with interparticle interactions, the situation is more complicated and
we cannot utilize the trick with the energy manifold because H �= 0. For this case,
we can obtain the frequencies of the atom-trimer conversion system with solving
the eigenvalues of the Hamiltonian–Jacobi matrix19 obtained by linearizing the
equations of motion around the fixed point corresponding to the CPT state.

By making use of the same canonical transformation in the above discussions,
i.e. ψa = x1 + iy1, ψb = x2 + iy2, ψd = x3 + iy3, ψg = x4 + iy4, we cast the
mean-field grand canonical Hamiltonian K = H − �µaNA − �µbNB into a classical
grand Hamiltonian. Here xi and yi are governed by the differential equations: ẋi =
∂K/∂yi, ẏi = −∂K/∂xi. By setting ẋi = ẏi = 0, we can obtain the fixed point which
corresponds to the CPT state: xa = |ψa|, ya = 0, xb = |ψb|, yb = 0, xd = 0, yd = 0,
xg = |ψg|, yg = 0 with the same chemical potentials and two-photon resonance
conditions in Eq. (6).

The frequencies of the fixed points can be obtained by solving the eigenvalues
of the Hamiltonian–Jacobi matrix. Let x1 = z1, y1 = z2, x2 = z3, y2 = z4, x3 = z5,
y3 = z6, x4 = z7, y4 = z8, then elements of the Hamiltonian–Jacobi matrix can be
written elegantly as Jij = [(−1)i/2]∂2K/∂zi∂zj±1|CPT, where i, j are respectively
indexes of rows and columns, and the plus (subtraction) sign is for odd (even) j.
Substituting the CPT state into the matrix elements, we find the Hamiltonian–
Jacobi matrix around this fixed point (CPT state) for the atom-trimer conversion
system J is
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


0 4χaa|ψa|2 0 4χab|ψa||ψb| 0 α 0 4χag|ψa||ψg|
0 0 0 0 β 0 0 0

0 4χab|ψa||ψb| 0 4χbb|ψb|2 0 γ 0 4χbg|ψb||ψg|
0 0 0 0 η 0 0 0

0 α 0 γ 0 −ζ 0 −ν
β 0 η 0 ζ 0 ν 0

0 4χag|ψa||ψg| 0 4χbg|ψb||ψg| 0 −ν 0 4χgg|ψg|2
0 0 0 0 ν 0 0 0




(16)

where α = −β = 2λ|ψa|, γ = η = −Ω|ψg|, ν = Ω|ψb|, ζ = (4χaa − 2χad)|ψa|2 +
(4χab−2χbd)|ψb|2+(4χag−4χdg)|ψg|2−δ for the AA-path, while α = λ|ψb|−Ω|ψg|,
β = −λ|ψb| − Ω|ψg|, γ = −η = −λ|ψa|, ν = λ|ψa|, ζ = (χaa + χab − 2χad)|ψa|2 +
(χab + χbb − 2χbd)|ψb|2 + (χag + χbg − 2χdg)|ψg|2 − δ for the AB-path.

Now we solve the eigenvalues ηi of J . We can obtain analytically the eigenvalues
(ηi) of Eq. (16) other than the zero-mode frequency of the matrix J .

η1,2± = iω1,2± = ± i√
2

√
b±

√
b2 − c ,

b = ζ2 + 2ν2 − 2αβ − 2γη ,

c = 4(ν4 − 2αβν2 − 2γην2 + α2β2 + γ2η2 + 2αβγη

+ 4χaaβ
2ζ|ψa|2 + 4χbbζη

2|ψb|2 + 4χggζν
2|ψg|2

+ 8χabβζη|ψa||ψb| + 8χagβζν|ψa||ψg|
+ 8χbgνζη|ψb||ψg|) .

(17)

Here ω1,2± are the intrinsic frequencies of the system and are identical to the Bogoli-
ubov excitation frequencies of the system.5 When ω1,2± become pure imaginary or
complex, the corresponding CPT state is dynamically unstable. For the two paths,
we find b = δ2 + 2lΩ2/3 > 0. Here l = 1 (l = 2) for the AA- (AB-)path. Hence
the unstable regime is given by either c < 0 or c > b2. When χij = 0 and δ = 0,
eigenvalues ηi reduce to ω1,2± = ±√l/3Ω. This is consistent with the results in
Eqs. (11) and (15).

3.3. Adiabatic condition

For a classical system, the adiabatic evolution3 requires that the external param-
eter R changes slowly compared to the intrinsic frequency of the system, i.e. the
adiabatic parameter satisfy:

ε =
2π
ω

·
∣∣∣∣∣ṘR
∣∣∣∣∣� 1 , (18)

where ω is the frequency of the system, and ε → 0 corresponds to the adiabatic
limit.
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For the atom-trimer conversion system, if the STIRAP process is implemented
by scheme (i), then R = Ω; if the STIRAP process is carried out by scheme (ii),
then R = λ. In both schemes, |Ṙ/R| = |tanh(t/τ)| ∈ (0, 1). Hence 2π/ω can be
used to scale the adiabatic parameter completely, i.e. 2π/ω → 0 corresponds to
the adiabatic limit. For this atom-trimer conversion system which has multiple
freedom degrees, ω is the smallest value of the magnitude of the frequencies of
the system in Eq. (17), i.e. ω = Min{|ω1+|, |ω1−|, |ω2+|, |ω2−|}. When χij = 0,
ω = (1/

√
6)
√

3δ2 + 2lΩ2 −√
9δ4 + 12lΩ2δ2. Here we can see that ω only relies on

the dimer-trimer coupling Rabi frequency Ω and has no relation with the atom-
dimer coupling Rabi frequency λ. Owing to the relation: ε ∼ 2π/ω, this frequency
makes the adiabatic condition of the atom-trimer dark state only depend upon Ω.
This adiabatic condition is different from other STIRAP processes,10,11 where the
adiabatic condition of dark state is not only related with the Rabi frequency of
the Stokes laser but also the Rabi frequency of the pump laser. In the presence
of the nonlinear collisions, i.e. χij �= 0, the adiabatic parameter also relies on the
atom-dimer coupling Rabi frequency λ. However, its influence is really small, as
demonstrated below.

Figure 3 shows the Rabi frequencies, the adiabatic parameters and the pop-
ulation dynamics as a function of time for the AA-path. In this example the

Fig. 3. Single path AA: (a) and (d) Rabi frequencies, (b) and (e) adiabatic parameters and
(c) and (f) population dynamics as functions of time with and without nonlinear collisions for
γ = 0, δ = −3. In the left figures, the parameters are Ω = Ω0 sech t/τ , λ is constant. Time is
in units of λ−1 (δ is in units of λ). In the right figures, the parameters are λ = λ0 cosh t/τ , Ω is
constant. Time is in units of λ−1

0 (δ is in units of λ0).
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various parameters are approximate for 41K (A atom) and 87Rb (B atom). In
the left columns, the STIRAP is finished by scheme (i), where the external fields
are shown in Fig. 3(a). The parameters are chosen as: λ = 4.718 × 104 s−1,
Ω = Ω0 sech t/τ with Ω0/λ = 20, λτ = 20. In the right columns, the STIRAP
is finished by scheme (ii), where the external fields are shown in Fig. 3(e). The pa-
rameters are chosen as: λ = λ0 cosh t/τ with λ0 = 4.718 × 104 s−1, λ0τ = 20,
Ω/λ0 = 20. For both the above cases, as in Ref. 14, the collisional parame-
ters are taken as χaa = 0.3214, χbb = 0.5303, χab = 0.8731 and other colli-
sional parameters are 0.0938, all in units of λ/n (λ0/n) in scheme (i) (scheme
(ii)).

From Fig. 3(b), one can see that, under scheme (i), no matter whether the
interparticle interactions are included, the adiabatic condition is approximately
satisfied at the initial time of evolution, i.e. ε � 1, which implies the system can
adiabatically evolve along the CPT state. At a latter time, the adiabatic condition
begins not to be fulfilled, which denotes the system deviate from the CPT state at
that time, as can be seen in Fig. 3(c). From Fig. 3(e), under scheme (ii), one can
see that the adiabatic conditions with and without interparticle interactions are
both fulfilled during the entire evolution. For example, when χij = 0, the adiabatic
parameter is smaller than 0.035 throughout the evolution process. Therefore, the
system can follow the CPT state completely, as is shown in Fig. 3(f). In comparison
with the results in scheme (i) and scheme (ii), we find that the adiabatic condition
of the atom-trimer dark state in scheme (ii) is much easier to satisfy than the one in
scheme (i). Therefore, the adiabaticity of the system in the second scheme is better
than the first one.

For the AB channel, we obtain the similar conclusions as in the AA-path, and
figures are not shown here.

4. Conclusion

In conclusion, using the methods of classical Hamiltonian dynamics, we investigate
the adiabaticity of the dark state in the atom-trimer conversion system in the STI-
RAP process. We show that, in the absence of the nonlinear collisions, the adiabatic
condition for the atom-trimer dark state only depends on the Rabi frequency of the
dimer-trimer coupling optical field and has no relation with the atom-dimer coupling
Rabi frequency. This is different from the STIRAP processes in the linear system
and the atom-dimer conversion system in which the adiabatic parameters not only
depend on the Rabi-frequency of the Stokes laser but also the Rabi-frequency of the
pump laser. In the presence of the nonlinear collisions, the adiabatic condition also
relies on the atom-dimer coupling Rabi frequency. However, its influence is very
small. Moreover, we propose a more feasible two-photon STIRAP scheme that has
better adiabaticity and is more effective in obtaining higher atom-trimer conversion
efficiency.
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